

Capítulo 5: Motores Cohete

CONTENIDOS

- Descripción, Aplicaciones y Desarrollo
- Clasificación
- Estudio propulsivo: Empuje
- Requerimientos del sistema de propulsión
- Análisis de utilización

CLASIFICACIÓN

			Empuje (N)	Empuje/peso	Impulso específico (sg)	Fluido de Trabajo T _{max} (K)	Estado	Tiempo característico	Aplicaciones
Propulsion Fluidodinamica	Quimicos	Sólidos	0-107	<10 ²	≤ 280	Gases Comb. Prop. Solidos 3000	Utilización	Segundos	JATO, Misiles y Misiones Espacia les en General
		Líquidos	0-107	<102	≤ 500	Gases Comb. Prop. Liquidos 4500	Utilización	Minutos	JATO, Misiles y Misiones Espacia les en General
		Híbridos	0-10 ⁶	<10 ²	≤ 350	Gases Comb. Prop. Solidos y Liquidos	Investigacion y Desarrollo	Minutos	JATO, Misiles y Misiones Espacia les en General
	Nucleares	Fisión	<10 ⁵ (no pequeños)	3×10^{1}	≤ 1000	Н ₂ 3000	Investigacion y Desarrollo	Minutos	Misiones de Superficie e Interplanetarias
		Fusión		10 ⁻¹	3000		Investigación Básica		Especulativas
	Electricos	Resisto-jet	05	10 ⁻²	150-800	N ₂ , NH ₃ 3000	Utilización	Dias	Misiones de Satélites
		Arco eléctrico	0-1.0	$10^{-4} - 10^{-2}$	280-1500	N ₂ H ₄ ,H ₂ ,NH ₃ 5800	Utilización	Meses	Misiones de Satélites
		Electrostáticos (acelerad. iones)	0-1.0	$10^{-6} - 10^{-4}$	1500-25000	Х _е	Utilización y Desarrollo	Meses	Misiones de Satélites e Interplanetarias
		Electromagnétic. (acelerad. plasma)	0-2	$10^{-6} - 10^{-4}$	1500-15000	H2	Utilización y Desarrollo	Meses	Misiones de Satélites e Interplanetarias
		Fotónicos			3.16 x 10 ⁷		Especulativo	Апов	Especulativas ¿Estelares?

DESCRIPCIÓN MOTOR COHETE DE COMBUSTIBLE SÓLIDO

DESCRIPCIÓN MOTOR COHETE DE COMBUSTIBLE SÓLIDO

MOTOR COHETE DE COMBUSTIBLE LÍQUIDO

MOTOR COHETE DE COMBUSTIBLE LÍQUIDO

MOTOR COHETE DE COMBUSTIBLE LÍQUIDO

MOTOR COHETE HÍBRIDO

DESCRIPCIÓN

MOTOR COHETE HÍBRIDO (SPACE SHIP ONE)

SpaceShipOne

DESCRIPCIÓN (Nucleares)

DESCRIPCIÓN (Nucleares)

DESCRIPCIÓN (Nucleares)

DESCRIPCIÓN (Termoeléctricos)

DESCRIPCIÓN (lónicos)

DESCRIPCIÓN (lónicos)

DESCRIPCIÓN (electromagnéticos)

ESTUDIO PROPULSIVO: EMPUJE

- M masa instantánea del vehículo
- M_F = masa fija (no consumible)
- M_P = masa de propulsante
- V = velocidad del vehículo ejes tierra
- V_R = velocidad del propulsante relativa al vehículo
- V_S = velocidad relativa del propulsante en la sección de salida
- \mathcal{G}_P = volumen del dominio que contiene propulsante
- A_s = área de salida de propulsante
- $p_{\rm s}$ = presión en la sección de salida

ESTUDIO PROPULSIVO: EMPUJE

ESTUDIO PROPULSIVO: EMPUJE

ESTUDIO PROPULSIVO Balance energético

ESTUDIO PROPULSIVO Ecuación de Cohete

$$M \ \frac{dV}{dt} = E - D - Mg \cos\theta \xrightarrow{\dot{m} = -dM/dt} dV + \frac{D}{M} dt + g \cos\theta dt = -I_{sp} \ \frac{dM}{M}$$

$$\left(V_{f} - V_{0}\right) + \int_{t_{b}} \frac{D}{M} dt + \int_{t_{b}} g \cos\theta dt = I_{sp} \ln \frac{M_{0}}{M_{f}}$$
$$\Delta V_{0} = \left(V_{f} - V_{0}\right)$$
$$\Delta V_{D} = \int_{t_{b}} \frac{D}{M} dt$$
$$\Delta V_{g} = \int_{t_{b}} g \cos\theta dt$$
$$\Delta V_{g} = \int_{t_{b}} g \cos\theta dt$$

ESTUDIO PROPULSIVO Requerimientos del sistema de propulsión

MISIONES

•Vehículos lanzadores

(Gran potencia (GW), E/W>1, Δ V ~ 5km/s)

Satélites y plataformas espaciales

Compensación de resistenciaControl de orientación

•Transferencia orbital

•Sondas y naves interplanetarias

(Voyager $\Delta V \sim 0.15$ km/s, Galileo $\Delta V \sim 1.7$ km/s)

Nave estelar

ESTUDIO PROPULSIVO MISIONES

ESTUDIO PROPULSIVO Requerimientos del sistema de propulsión

Mision	$\Delta V (\text{km/s})$
Superficie terrestre a OTB	7.6
OTB a OGE	4.2
Escape de la Tierra desde OTB	3.2
Escape desde la superficie de la Tierra	11.2
OTB a órbita lunar (7 días)	3.9
OTB a órbita de Marte* (0.7 años)	5.7
OTB a órbita de Marte (40 días)	85.0
Superficie terrestre a la de Marte y vuelta*	34
OTB a órbita de Venus y vuelta* (0.8 años)	16
OTB a órbita de Mercurio y vuelta*	31
OTB a órbita de Júpiter y vuelta* (5.46 años)	64
OTB a órbita de Saturno y vuelta (12.1 años)	110
OTB a órbita de Neptuno (29.9 años)	13.4
OTB a órbita de Neptuno (5 años)	70
OTB a órbita de Plutón* (45.5 años)	
Escape del Sistema Solar desde OTB	8.7
OTB a 1000 UA (50 años)	142
OTB a α-Centauro (50 años)	30.000

* Con transferencia elíptica de Hohmann

OTB Órbita terrestre baja de 270 km

OGE Órbita geoestacionaria, 42,227 km de radio.

UA Unidad Astronómica = 149.558.000 km (distancia tierra-sol).

ESTUDIO PROPULSIVO Análisis de utilización

$\Delta V = I_{sp} \ln \frac{M_0}{M_0 - M_P} \qquad \qquad$	$M_0 = M_{PL} + M_{PP} + M_M + M_T + M_P$ $\dot{M}_P = \dot{m}t_b$
$\alpha_{M} = M_{M} / P_{PP}$ $\alpha_{PP} = M_{PP} / P_{PP}$	$P_{PP}\eta_M = \frac{1}{2} \dot{m} I_{sp}^2$
$k = M_T / M_P$ $R = M_T / M_Q$	
	$\Delta V = I_{sp} \ln \left[\frac{\varepsilon + k + 1}{\varepsilon + k + R} \right]$
$\varepsilon = \frac{M_{PP} + M_M}{M_P} = \frac{\left(\alpha_M + \alpha_{PP}\right)}{2\eta_M t_b} I_{sp}^2 = \frac{I}{2}$	$\frac{2}{sp}$

ESTUDIO PROPULSIVO Análisis de utilización

$$\frac{\Delta V}{\sqrt{2Z}} = \ln\left[\frac{\varepsilon + k + 1}{\varepsilon + k + R}\right]$$

$$\varepsilon = \frac{M_{PP} + M_M}{M_P} = \frac{\left(\alpha_M + \alpha_{PP}\right)}{2\eta_M t_b} I_{sp}^2 = \frac{I_{sp}^2}{2Z}$$

$$n_M t_b = \frac{P_{PP} n_M t_b}{P_{PP} n_M t_b}$$

$$Z = \frac{\eta_M \iota_b}{\alpha_M + \alpha_{PP}} = \frac{\eta_{PP} \eta_M \iota_b}{M_{PP} + M_M}$$

ESTUDIO PROPULSIVO Análisis de utilización

