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Abstract

This thesis contains new results in the �eld of modeling and control of rotating
stall and surge in compressors.

A close coupled valve is included in the Moore-Greitzer compression system model
and controllers for both surge and rotating stall is derived using backstepping.
Disturbances, constant and time varying, are then taken into account, and non-
linear controllers are derived. Stability results are given. Then, passivity is used
to derive a simple surge control law for the close coupled valve. This proportional
control law is shown to stabilize the system even in the presence of time varying
disturbances in mass 
ow and pressure.

A novel model for an axial compression system with non-constant compressor
speed is derived by extending the Moore-Greitzer model. Rotating stall and surge
is studied in connection with acceleration of the compressor.

Finally, a model for a centrifugal compression system with time varying compres-
sor speed is derived. The variable speed compressor characteristic is derived based
on energy losses in the compressor components. Active control of surge in con-
nection with varying speed is studied. Semi-global exponential stability of the
compression system with both surge and speed control is proven.

The main results of this thesis have been presented at international conferences.
Parts of the thesis has also been submitted for publication in international journals.
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Chapter 1

Introduction

1.1 Introduction

This thesis presents results from an investigation on nonlinear compressor control
where feedback is used to stabilize the compressor to the left of the surge line. The
work is motivated by the fundamental instability problem of surge and rotating
stall which limits the range of operation for compressors at low mass 
ows.

This instability problem has been extensively studied and industrial solutions
based on surge avoidance are well established. These solutions are based on keep-
ing the operating point to the right of the compressor surge line using a surge
margin. There is a potential for 1) increasing the e�ciency of compressors by
allowing for operation closer to the surge line than what is the case in current
systems, and 2) increasing the range of mass 
ows over which the compressor can
operate stably. The increase in e�ciency and mass 
ow range is in particular
possible with compressor designs where the design is done with such controllers
in mind. This, however, raises the need for control techniques, which stabilize the
compressor also to the left of the surge line, as disturbances or set point changes
may cause crossing of the surge line. This approach is known as active surge con-
trol. Active surge control is presently an area of very intense research activity, and
is also the topic of this thesis.

1.2 Background

Compressors are used in a wide variety of applications. These includes turbo-
jet engines used in aerospace propulsion, power generation using industrial gas
turbines, turbocharging of internal combustion engines, pressurization of gas and

uids in the process industry, transport of 
uids in pipelines and so on.

There are four general types of compressors: reciprocating, rotary, centrifugal and



2 Introduction

axial. Some authors use the term radial compressor when refering to a centrifu-
gal compressor. Reciprocating and rotary compressors work by the principle of
reducing the volume of the gas, and will not be considered further in this thesis.
Centrifugal and axial compressors, also known as turbocompressors or continuous

ow compressors, work by the principle of accelerating the 
uid to a high veloc-
ity and then converting this kinetic energy into potential energy, manifested by
an increase in pressure, by decelerating the gas in diverging channels. In axial
compressors the deceleration takes place in the stator blade passages, and in cen-
trifugal compressor it takes place in the di�user. One obvious di�erence between
these two types of compressors is, in axial compressors, the 
ow leaves the com-
pressor in the axial direction, whereas, in centrifugal compressors, the 
ows leaves
the compressor in a direction perpendicular to the axis of the rotating shaft. In
this thesis both types of continuous 
ow compressor will be studied. The litera-
ture on compressors in general is vast, and a basic introduction is given by e.g.
Ferguson (1963) or Cohen et al. (1996), and more advanced topics are covered by
e.g. Cumpsty (1989).

The useful range of operation of turbocompressors is limited, by choking at high
mass 
ows when sonic velocity is reached in some component, and at low mass 
ows
by the onset of two instabilities known as surge and rotating stall. Traditionally,
these instabilities have been avoided by using control systems that prevent the
operating point of the compressions system to enter the unstable regime to the
left of the surge line, that is the stability boundary. A fundamentally di�erent
approach, known as active surge/stall control, is to use feedback to stabilize this
unstable regime. This approach will be investigated in this thesis, and it will allow
for both operation in the peak e�ciency and pressure rise regions located in the
neighborhood of the surge line, as well as an extension of the operating range of
the compressor.

1.3 Stability of Compression Systems

Compression systems such as gas turbines can exhibit several types of instabil-
ities: combustion instabilities, aeroelastic instabilities such as 
utter and �nally
aerodynamic 
ow instabilities, which this study is restricted to.

Two types of aerodynamic 
ow instabilities can be encountered in compressors.
These are known as surge and rotating stall. The instabilities limits the 
ow
range in which the compressor can operate. Surge and rotating stall also restrict
the performance (pressure rise) and e�ciency of the compressor. According to
de Jager (1995) this may lead to heating of the blades and to an increase in the
exit temperature of the compressor.

1.3.1 Surge

Surge is an axisymmtrical oscillation of the 
ow through the compressor, and is
characterized by a limit cycle in the compressor characteristic. An example of
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such a characteristic is shown as the S-shaped curve in Figure 1.1. The dotted
segment of the curve indicates that this section usually is an approximation of
the physical system, as it is di�cult to measure experimentally. Surge oscillations
are in most applications unwanted, and can in extreme cases even damage the
compressor. As discussed by Erskine and Hensman (1975) and Greitzer (1981),
surge can also induce vibrations in other components of the compression system,
such as e.g. connected piping. It is common to distinguish between at least two
di�erent types of surge: 1) Mild/Classic surge and 2) Deep surge. A combination
of surge and rotating stall is known as modi�ed surge. For more information on
di�erent types of surge, consult Greitzer (1981) or de Jager (1995).

The �rst of these types is a phenomenon with oscillations in both pressure and

ow in the compressor system, while in the second type, the oscillations in mass

ow have such a large amplitude, that 
ow reversal occurs in the compression
system. A drawing of a typical deep surge cycle is shown in Figure 1.1. The cycle
starts at (1) where the 
ow becomes unstable. It then jumps to the reversed 
ow
characteristic (2) and follows this branch of the characteristic until approximately
zero 
ow (3), and then jumps to (4) where it follows the characteristic to (1), and
the cycle repeats. Surge can occur in both axial and centrifugal compressors.

(1)

(2)

(3)

(4)

pressure

comp. char.

mass 
ow

Figure 1.1: Compressor characteristic with deep surge cycle, de Jager (1995).

1.3.2 Rotating Stall

Rotating stall can occur in both axial and centrifugal compressors. Although
rotating stall is known to occur in centrifugal compressors, see e.g. Emmons et al.
(1955), there exists little theory on the subject, and according to de Jager (1995)
its importance is still a matter of debate. In this thesis, only rotating stall in axial
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compressors will be considered, and when it is referred to rotating stall it is to be
understood that a axial compressor is considered.

Rotating stall is an instability where the circumferential 
ow pattern is disturbed.
This is manifested through one or more stall cells of reduced, or stalled, 
ow prop-
agate around the compressor annulus at a fraction, 20-70% according to Greitzer
(1980), of the rotor speed. This leads to a reduction of the pressure rise of the com-
pressor, and in the compressor map this corresponds to the compressor operating
on the so called in-stall characteristic, see Figure 1.3.

A

B

C

Direction of

stall propagation

Compressor
blade row

Figure 1.2: Physical mechanism for inception of rotating stall, Emmons et.al.

(1955).

The basic explanation of the rotating stall mechanism was given by Emmons et
al. (1955) and can be summarized as follows. Consider a row of axial compressor
blades operating at a high angle of attack, as shown in Figure 1.2. Suppose that
there is a non-uniformity in the inlet 
ow such that a locally higher angle of attack
is produced on blade B which is enough to stall it. The 
ow now separates from
the suction surface of the blade, producing a 
ow blockage between B and C.
This blockage causes a diversion of the inlet 
ow away from B towards A and C,
resulting in a increased angle of attack on C, causing it to stall. Thus the stall cell
propagate along the blade row.

It is common to distinguish between at least two types of rotating stall, full-span
and part-span. In full-span stall, the complete height of the annulus is stalled,
while in part-span rotating stall a restricted region of the blade passage is stalled.
Full-span stall is most likely to occur in high hub/tip ratio axial compressors. In
addition we can have various degrees of rotating stall depending of the size of
the area of the compressor annulus being blocked. In addition to the problem
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related to reduced pressure rise due to rotating stall , there is also the problem
of vibrations in the blades as stall cells rotate at a fraction of rotor speed. Thus,
the blades passes in and out of regions of stalled 
ow which can, according to
Horlock (1958), Greitzer (1981) and Pinsley et al. (1991), induce vibrations in
the blades. Moreover, if a natural frequency of vibration of the blades coincides
with the frequency at which the stall cell pass a blade, the result is resonance and
possible mechanical failure due to fatigue.

Another consequence of rotating stall is the hysteresis occurring when trying to
clear the stall by using the throttle. This phenomenon is depicted in Figure 1.3, and
might be described in the following manner: Initially the compressor is operating
stably (1), then a disturbance drives the equilibrium over the surge line resulting
in rotating stall, and a operating point on the low pressure in-stall characteristic
(2). By opening the throttle to clear the stall, result in a higher throttle opening
than initially (3), before the operating point is back on the stable compressor
characteristic (4). There are several degrees to how severe this hysteresis may
be. This depends on the so called skewness of the compressor characteristic. This
is treated in detail in recent papers by Wang and Krsti�c (1997a), Sepulchre and
Kokotovi�c (1996) and Protz and Paduano (1997).

(1)

(2)

(3)

(4)

pressure

In-stall char.
comp. char.

mass 
ow

Figure 1.3: Schematic drawing of hysteresis caused by rotating stall.

1.3.3 Stability Analysis

As a rule, stall and surge occur at the local maximum of the compressor char-
acteristic or at a point of the compressor characteristic with a certain positive
slope. When linearizing the nonlinear surge model of Greitzer (1976a), one gets
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a model similar to that of a damped linear oscillator. This surge model was also
studied by Stenning (1980). Calculating the eigenvalues of the oscillator system,
as done by Willems (1996) , reveals that the stability boundary is set by a relation
between the slope of the compressor characteristic, the slope of the load line, and
the Greitzer B-parameter. The surge point will be located some small distance to
the left of the peak. According to Cumpsty (1989), the peak of the compressor
characteristic provides a convenient working approximation for the surge point.
The same conclusion is drawn by Stenning (1980), where it is also pointed out
that rotating stall occurs at the peak of the compressor characteristic.

Another approach frequently used to investigate stability of compression systems
is bifurcation analysis. For studies on this topic, consult McCaughan (1989), Liaw
and Abed (1992) or Abed et al. (1993).

1.4 Modeling of Compression Systems

Low order models for surge in compression systems, both axial and centrifugal,
have been proposed by many authors. A classical reference is Emmons et al.

(1955). In the following, a compression system will refer to a system consisting of
a compressor pressurizing incompressible 
uid, which is discharged into a plenum
volume which discharges via a throttle valve.

The compression system model of Greitzer (1976a) has been widely used for surge
control design. It was derived for axial compression systems, but Hansen et al.

(1981) showed that it is also applicable to centrifugal compressors. The model has
two states, normalized mass 
ow and normalized pressure, and the compressor is
treated as an actuator disc, with a third order polynomial 
ow/pressure rise char-
acteristic. Other assumptions of this model are: one dimensional incompressible

ow in the ducts, isentropic compression process in the plenum and no spatial
variations of pressure in the plenum. Extensive experiments by Greitzer (1976b)
and Hansen et al. (1981) con�rm that although it is of low order compared to the
complex phenomenon it models, the model is capable of describing both the qual-
itative and quantitative aspects of surge. The model was extended for centrifugal
compressors with varying rotor speed by Fink et al. (1992). Many other models of
compression systems have been presented in the literature, for an overview consult
Willems (1996).

Based on the work of Moore (1984b), the Moore-Greitzer model was derived in
Moore and Greitzer (1986). In developing this model, some of the assumptions
made were: Large hub/tip ratio, irrotational and inviscid 
ow in the inlet duct,
incompressible compressor mass 
ow, short throttle duct, small pressure rise com-
pared to ambient conditions and constant rotor speed. A Galerkin procedure was
used to approximate the PDEs describing the system dynamics by three ODEs.
This three state model is capable of describing both surge and rotating stall, the
third state being the stall amplitude. Many authors have extended and modi-
�ed the model. Inclusion of higher order harmonics was studied by Mansoux et

al. (1994), and other types of compressor characteristics was used by Wang and
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Krsti�c (1997a).

An alternative model of rotating stall was presented by Paduano et al. (1995),
where rotating stall was described as a traveling wave, and spatial Fourier analysis
was used. Other models that are capable of demonstrating rotating stall are
those of Eveker and Nett (1991) and Badmus et al. (1995), but these models do
not include the stall amplitude as a state, but the presence of rotating stall is
manifested as a pressure drop.

1.5 Control of Surge and Rotating Stall

1.5.1 Surge/Stall Avoidance

As mentioned above, the state of art in control of compressors was until about a
decade ago, the method of surge avoidance, which is usually an open loop strategy
according to de Jager (1995). The compressor is prevented from operating in a
region near and beyond the surge line. This is achieved by e.g. recirculation of the

ow or blowing o� 
ow through a bleed valve. As the compressor characteristic
and thus the surge line may be poorly known, it will often be necessary to have
a fairly conservative surge margin between the surge line and the surge avoidance
line. The compressor is then not allowed to operate between these two lines in the
compressor map. Accounting for possible disturbances also a�ects the size of the
surge margin.

The drawbacks of surge avoidance schemes are several: (1) Recycling and bleeding
of compressed 
ow lower the e�ciency of the system, (2) maximum e�ciency
and pressure rise may not be achievable at all, as they usually are achieved for
mass 
ows close to the surge line and (3) the surge margin limits the transient
performance of the compressor as acceleration of the machine tends to drive the
state of the system towards the surge line.

An alternative to surge avoidance is surge detection and avoidance. Using this
strategy, the drawbacks of the surge margin can be avoided by the activation of
the controller if the onset of instabilities is detected. De Jager (1995) concludes
that the main disadvantages of this strategy are problems associated with the
detection of the instability onset and the necessity of large control forced and
fast-acting control systems.

1.5.2 Active Surge/Stall Control

The approach of active surge/stall control aims at overcoming the drawbacks of
surge avoidance, by stabilizing some part of the unstable area in the compressor
map using feedback. This approach was introduced in the control literature by
Epstein et al. (1989). In the last decade, the literature on feedback stabilization of
compression systems has become extensive. This is partly due to the introduction,
and success, of the Moore-Greitzer model.
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In the literature on developments in the �eld of jet engines for aircraft propulsion,
active stall/surge control is often said to become an important part of future
engines. For details see e.g. Covert (1995), Ru�es (1996) or DeLaat et al. (1996).
The term \smart engines" is often used when refering to these engines. Brown
et al. (1997) reports of successfull in-
ight experiments on a F-15 aircraft with
active stall control on one engine. Experimental results on laboratory engines are
reported by Paduano et al. (1993), Ffowcs Williams et al. (1993), Hynes et al.

(1994) and Behnken and Murray (1997).

Among several possible actuators for stabilizing compression systems, the throttle
valve as studied by Krsti�c et al. (1995b) and Badmus et al. (1996), or bleed valves as
studied by Eveker and Nett (1991) or Murray (1997) has been the most commonly
used, at least in the control literature. Other possibilities are variable inlet guide
vanes as in Paduano et al. (1993), loudspeaker as in Ffowcs Williams and Huang
(1989), tailored structures as in Gysling et al. (1991), recirculation as in Balchen
and Mumm�e (1988), movable wall as in Epstein et al. (1989) or air injection as in
Day (1993) and Behnken and Murray (1997). However, the use of a close-coupled
valve (hereafter named CCV) was claimed by Simon et al. (1993) and van de Wal et
al. (1997) to be among the most promising actuators for compressor surge control.

The methods used for designing surge and stall controllers vary. Linearization and
complex-valued proportional control was used by Epstein et al. (1989), bifurcation
theory by Liaw and Abed (1996), feedback linearization by Badmus et al. (1996),
Lyapunov methods by Simon and Valavani (1991), backstepping by Krsti�c et al.
(1995b) and H1 by van de Wal et al. (1997) and Weigl and Paduano (1997). In
this thesis, backstepping, which is Lyapunov based, and passivity will be used.

Another important aspect of active surge and stall control is the disturbance rejec-
tion capabilities and robustness of the proposed controllers. Greitzer and Moore
(1986) recognized that research is needed on modeling of disturbances in compres-
sion systems. The reason for this being that disturbances may initiate surge or
rotating stall. Surge controllers with disturbance rejection was presented by Si-
mon and Valavani (1991) and stall/surge controllers by Haddad et al. (1997), and
stall/surge controllers for compressors with uncertain compressor characteristic
was studied by Leonessa et al. (1997b).

1.6 Contributions of this Thesis

The contributions of this thesis can be summarized as follows:

� Close coupled valve control of the Moore-Greitzer model: Con-
trollers for a close coupled valve in a Moore-Greitzer type compression sys-
tem have been derived. The controllers allow for stabilization of rotating stall
and surge to the left of the compressors surge line. The e�ect of constant and
time varying disturbances has also been studied, and controllers have been
derived that ensures avoidance of stall and surge when these disturbances are
present in the compression system. The theory used is backstepping. This



1.7 Outline of the Thesis 9

work has been published in Gravdahl and Egeland (1997c) and Gravdahl
and Egeland (1997d), and is also reported in Gravdahl and Egeland (1998a).

� Passivity based surge control: A surge control law has been derived for
the Greitzer model using passivity and a input-output model. The resulting
controller is very simple and is shown to render the system L2-stable also
when disturbances are taken into account. Parts of this work has been
published in Gravdahl and Egeland (1997f) and submitted in Gravdahl and
Egeland (1998c).

� Post stall modeling of axial compression systems with non-constant

speed: An extension of the Moore-Greitzer model has been derived to take
non-constant compressor speed into account. This new model also includes
higher harmonics of rotating stall. The work is published in Gravdahl and
Egeland (1997a) and is also reported in Gravdahl and Egeland (1997e)

� Centrifugal compressor modeling and control: A speed dependent
compressor characteristic for a centrifugal compressor has been derived by
the use of energy transfer and losses in the compressor components. This
characteristic has been used in a dynamic model of a compression system
with time varying compressor speed, to derive controllers that simultaneously
suppress surge and ensures that desired speed is reached. This work has
been published in Gravdahl and Egeland (1997g) and Gravdahl and Egeland
(1998b), and is also under consideration for publication in Gravdahl and
Egeland (1997b).

The results reported of in this Thesis is also accepted for publication in Gravdahl
(1998).

1.7 Outline of the Thesis

The outline of this thesis is as follows

� Chapter 2: The Moore-Greitzer model and the actuator used in this theses
for surge/stall control, the close coupled valve, are presented. Using back-
stepping, various controllers are derived. These includes controllers for surge
with time varying and constant disturbances (in the later case an adaptive
controller is derived) and controllers for rotating stall with time varying dis-
turbances. Stability results are given for each controller.

� Chapter 3: Passivity is used to derive a surge control law. The controller
is shown to maintain certain stability properties even if disturbances are
considered.

� Chapter 4: An extension of the familiar Moore-Greitzer model is presented.
This model includes Greitzer's B-parameters as a state, which is a conse-
quence of relaxing the assumption of constant compressor speed.
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� Chapter 5: Here a novel model for a compression system with a variable
speed centrifugal compressor is derived. Using Lyapunov theory, controllers
are derived that ensures suppression of surge and regulation of speed. The
closed loop system is shown to be semi globally exponentially stable.

� Chapter 6: Conclusions

� Finally, references and �ve appendices are given at the end of the thesis.
A nomenclature is given in Appendix A.



Chapter 2

Close Coupled Valve Control

of Surge and Rotating Stall

for the Moore-Greitzer

Model

2.1 Introduction

In this chapter controllers for surge and rotating stall using a CCV is derived.
Several possible actuators exists for stabilizing compression systems. Krsti�c et al.
(1995b), Badmus et al. (1996) and others suggest using a variable throttle valve,
Eveker and Nett (1991), Murray (1997) and others use bleed valves. These two
actuators have been the most commonly used, at least in the control literature.
However, there are many other possibilities: Paduano et al. (1993) use variable
inlet guide vanes, a loudspeaker is used by Ffowcs Williams and Huang (1989),
tailored structures in Gysling et al. (1991), recirculation is studied by Balchen and
Mumm�e (1988), a movable wall in Epstein et al. (1989) and �nally Day (1993) and
Behnken and Murray (1997) employ air injection. However Simon et al. (1993)
claimed that the use of a close-coupled valve (hereafter named CCV) is among the
most promising actuators for active surge control.

The use of a CCV for control of compressor surge was studied by Dussourd et al.

(1976), Greitzer (1981), Pinsley et al. (1991), Simon and Valavani (1991), Simon et
al. (1993) and Jungowski et al. (1996). Experimental results of compressor surge
control using a CCV was reported by Erskine and Hensman (1975) and Dussourd
et al. (1977). Simon (1993) and Simon et al. (1993) compared, using linear theory,
this strategy to a number of other possible methods of actuation and sensing. The
conclusion was that the most promising method of surge control is to actuate the
system with feedback from the mass 
ow measurement to a CCV or an injector. In
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line with this conclusion are the recent results of van de Wal and Willems (1996)
and van de Wal et al. (1997), where nonlinear controllers were derived based on
H1 performance speci�cations.

Dussourd et al. (1976), Greitzer and Griswold (1976), Dussourd et al. (1977),
Greitzer (1977) and Greitzer (1981) conclude that downstream components in
compression systems have an impact on the onset of rotating stall. Dussourd et

al. (1977) used a CCV to achieve a signi�cant extension of 
ow range, and it was
concluded that the CCV also a�ected the onset of rotating stall as well as surge.
Osborn and Wagner (1970) report of experiments where rotating stall in an axial-

ow fan rotor was suppressed, at the cost of a drop in e�ciency, by a movable
\door" close coupled downstream of the rotor. The door had a similar geometry
to that of a axisymmetric nozzle, and the experimental setup simulated a turbofan
engine. Greitzer (1977) found that a downstream nozzle shifted the point of onset
of rotating stall to lower mass 
ows, however the e�ect was strongest for single
cell, full span stall. The Moore-Greitzer model, which is going to be used in this
chapter, assumes a high hub to tip ratio compressor, which is likely to exhibit full
span stall. Moreover, Greitzer (1977) found that the stabilizing e�ect of the nozzle
falls rapidly with increasing distance between compressor and nozzle, and thereby
emphasizing the importance of close coupling between compressor and actuator,
a point also made by Hendricks and Gysling (1994). Based on this, the CCV will
in this thesis not only be used as an actuator to stabilize surge, but also rotating
stall.

Simon and Valavani (1991) studied the stability of a compressor with CCV con-
trol by using a Lyapunov function termed the incremental energy. The control
law developed by Simon and Valavani (1991) requires knowledge of the compres-
sor characteristic, and additional adjustments to the controller dictated by the
Lyapunov analysis is performed in order to avoid a discontinuous controller.

Here we will use the backstepping methodology of Krsti�c et al. (1995a) to derive
a control law for a CCV which gives a GAS equilibrium beyond the original surge
line. Simon and Valavani (1991) studied the e�ect on stability of disturbances in
pressure rise. This will be considered also here, and in addition we will also consider
disturbances in the plenum out
ow. In the case of only pressure disturbances, we
will derive a controller that only requires knowledge of an upper bound on the slope
of the compressor characteristic in order to guarantee stability. Discontinuity is
not a problem with this controller. Under mild assumptions on the disturbances,
global uniform boundedness and convergence will be proven in the presence of
both pressure and mass 
ow disturbances. Constant disturbances or o�sets will
also be considered.

Krsti�c and Kokotovi�c (1995) and Krsti�c et al. (1995b) used backstepping to design
anti surge and anti stall controllers. The actuator used was a variable throttle.
Here, we use the pressure drop across the CCV as the control variable. Pinsley
et al. (1991) pointed out that in compression systems with large B-parameter (to
be de�ned), the use of a CCV is expected to be more e�ective than the use of the
throttle in control of surge. In this case the 
ow through the throttle is less coupled
with the 
ow through the compressor than is the case when the B-parameter is
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small. Pinsley et al. (1991), Krsti�c and Kokotovi�c (1995) and Krsti�c et al. (1995b)
use feedback from mass 
ow and pressure. As will be shown, the application of the
backstepping procedure to CCV surge and stall control, in the case of no mass 
ow
disturbances, results in a control law which uses feedback from mass 
ow only.

As opposed to throttle control, CCV control modi�es the compressor character-
istic. This allows for, at the cost of a pressure loss over the valve, recovery from
rotating stall beyond the surge line. Although the pressure rise achieved in the
compression system with a steady pressure drop across the CCV is comparable
with the pressure rise achieved when the machine is in rotating stall, the CCV
approach is to prefer as the possibility for blade vibration and high temperatures
is avoided.

2.2 Preliminaries

2.2.1 The Model of Moore and Greitzer

Several dynamic models for the unstable operation of compression systems have
been proposed in the last decade, but the model of Moore and Greitzer (1986)
stands out in the sense that rotating stall amplitude is included as a state, and
not manifested as a pressure drop which is the case in the other models. The low
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Figure 2.1: Compression system. Figure taken from Moore and Greitzer (1986)
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order1 model of Moore and Greitzer (1986) captures the post stall transients of
a low speed axial compressor-plenum-throttle (see Figure 2.1) system. The main
assumptions made by Moore and Greitzer (1986) in deriving the model are: large
hub-to-tip ratio so that a two-dimensional description seems reasonable, incom-
pressible compressor mass 
ow, compressible 
ow in the plenum, spatially uniform
plenum pressure and short throttle duct. The three di�erential equations of the
model arises from a Galerkin approximation of the local momentum balance, the
annulus-averaged momentum balance and the mass balance of the plenum. A
cubic compressor characteristic is assumed. The model is given by:
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where

� � is the annulus averagedmass 
ow coe�cient (axial velocity divided by com-

pressor speed), where the annulus average is de�ned as 1
2�

R 2�
0

�(�; �)d�
4
=

�(�), and �(�; �) is the local mass 
ow coe�cient,

� 	 is the non dimensional plenum pressure or pressure coe�cient (pressure
divided by density and the square of compressor speed),

� J is the squared amplitude of rotating stall amplitude

� �T (	) is the throttle mass 
ow coe�cient and

� lc is the e�ective 
ow-passage nondimensional length of the compressor and
ducts de�ned as

lc
4
= lI +

1

a
+ lE ; (2.2)

where the positive constant a is the reciprocal time-lag parameter of the
blade passage,

For a discussion of the employed nondimensionalization, consult Appendix B. The
constant B > 0 is Greitzer's B-parameter de�ned by Greitzer (1976a) as

B
4
=

U

2as

r
Vp

AcLc
; (2.3)

where U is the constant compressor tangential speed (in m/s) at mean diameter,
as is the speed of sound, Vp is the plenum volume, Ac is the 
ow area and Lc is

1\Low order" refers to the simplicity of the model, three states, compared to the complex


uid dynamic system it models
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the length of ducts and compressor. The constant % > 0 is de�ned as

% =
3aH

(1 +ma)W
; (2.4)

where m is the compressor-duct 
ow parameter, H is the semi-height of the com-
pressor characteristic and W is the semi-width of the compressor characteristic.
The time variable � used throughout this chapter is also nondimensional, and is
de�ned as

�
4
= Ut=R (2.5)

where t is the actual time and R is the mean compressor radius. The notation _�
is to be understood as the derivative of � with respect to �, that is _� = d�

d�
.

Relaxing the constant speed assumption is important for studying e�ects of set
point changes, acceleration, deceleration, etc. A model taking variable speed into
account will be developed in Chapter 4, but will not be considered further here.

In the case of pure surge, that is when J � 0, the model reduces to that of Greitzer
(1976a):

_� =
1

lc
(	c(�)�	) (2.6)

_	 =
1

4B2lc
(���T (	)):

In Greitzer (1976a), the model was written

_� = B(	c(�)�	)

_	 =
1

B
(���T (	)):

The discrepancy in the constants is due to Greitzer (1976a) de�ning nondimen-
sional time as � = t!H where !H is the Helmholtz frequency. Here, nondimensional
time is de�ned according to (2.5), as was also done by Moore and Greitzer (1986).
The model (2.6) was derived for axial compression systems, but it was demon-
strated by Hansen et al. (1981) that the model also is applicable to centrifugal
systems.

The pressure rise of the compressor is a nonlinear function of the mass 
ow. This
function, 	c(�), is known as the compressor characteristic. Di�erent expressions
for this characteristic have been used, but one that has found widespread accep-
tance in the control literature is the cubic characteristic of Moore and Greitzer
(1986):

	c(�) =  c0 +H

 
1 +

3

2

�
�

W
� 1

�
� 1

2

�
�

W
� 1

�3!
; (2.7)

where the constant  c0 > 0 is the shut-o� value of the compressor character-
istic. The cubic characteristic with the parameters  c0, W and H is shown in
Figure 2.2. Mansoux et al. (1994), Sepulchre and Kokotovi�c (1996) and Wang and
Krsti�c (1997a) suggest other compressor characteristics for axial compressors, and
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Hansen et al. (1981) presents an alternative polynomial characteristic for centrifu-
gal compressors. However, the cubic seems to capture the general shape of the
compressor characteristic of a large class of compressors. The nondimensionaliza-
tion employed, transforms the usual family of curves in the compressor map, one
for each compressor speed, to one single characteristic given by (2.7). Nisenfeld
(1982) and Badmus et al. (1996) concludes that this is in fact a statement of the
Fan law relation. The surge line, which passes through the local maxima of the
family of curves is transformed to the local maximum of (2.7).

�

	

	c(�)2H

2W

 c0

Figure 2.2: Cubic compressor characteristic of Moore and Greitzer (1986). The

constants W and H are known as the semi width and semi height, respectively.

The throttle mass 
ow �T (	) is given by the throttle characteristic

�T (	) = 
T
p
	 (2.8)

where 
T is the throttle gain. The inverse throttle characteristic

	T (�) = ��1
T
(�) =

1


2
T

�2 (2.9)

is shown in Figure 2.5.

2.2.2 Close Coupled Valve

A compressor in series with a CCV will be studied in the following. According to
Simon and Valavani (1991), with \close-coupled" it is to be understood that the
distance between the compressor outlet and the valve is so small that no signi�cant
mass storage can take place, see Figure 2.3.
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Figure 2.3: Compression system with CCV

The assumption of no mass storage between the compressor and the valve allows
for the de�nition of an equivalent compressor. This term was introduced by Simon
and Valavani (1991). The pressure rise over this equivalent compressor is the sum
of the pressure rise over the compressor and the pressure drop over the valve.
The pressure drop over the valve will be used as the control. This will allow for
manipulation of the equivalent compressor characteristic, given by

	e(�) = 	c(�)�	v(�); (2.10)

where 	c(�) and 	v(�) are the compressor pressure rise and valve pressure drop
respectively and � is the axial mass 
ow coe�cient. The motivation behind this, is
that the slope of the compressor characteristic determines the stability properties
of the equilibrium of the system, and this slope can be varied by varying the
pressure drop over the CCV. The use of the CCV as an actuator for surge control
is also elaborated upon in section 5.7, where the stabilizing e�ect of such a valve
is discussed in connection with the destabilizing e�ect of incidence losses.

The CCV has a characteristic given by

	v(�) =
1


2
�2; (2.11)

where 
 > 0 is proportional to the valve opening. We now set out to repeat
the modeling and Galerkin approximation of Moore and Greitzer (1986) with the
equivalent characteristic 	e replacing 	c. Equation (5) in Moore and Greitzer
(1986), which gives the pressure rise across the compressor, is modi�ed according
to

pE � p1
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Equation (5) in Moore and Greitzer (1986)

�	v(�) (2.12)

where p1 and pE is the static pressure at the entrance and exit of the equivalent
compressor, � is the constant inlet density, U is the compressor speed at mean di-
ameter, Ns is the number of compressor stages, F (�) is the pressure rise coe�cient
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in the blade passage, and � is the angular coordinate around the wheel. Equation
(2.12) now gives the pressure rise over the equivalent compressor.

Using (2.12) as a starting point and following the derivation of Moore and Greitzer
(1986), the following model is found2:
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which will be used in design of stall/surge controllers in this chapter. In the simpler
case of pure surge, J is set to zero, and we are left with the model

_	 =
1

4B2lc
(���T ( )) (2.14)

_� =
1

lc
(	c(�)�	v(�)�	)

which will used in the study of surge control.

2.2.3 Equilibria

The compressor is in equilibrium when _� = _	 = _J = 0. If J(0) = 0 then J � 0
and the equilibrium values �0 and  0 are given by the intersection of 	e(�) and
the throttle characteristic. If J(0) > 0, and the throttle characteristic crosses
	e to the left of the local maximum, the compressor may3 enter rotating stall
and the equilibrium values �0 and  0 are given by the intersection of the throttle
characteristic and the stall characteristic 	es(�) which is found by analyzing the
_J-equation of (2.13). It is seen that _J = 0 is satis�ed for J = 0 or

J = Je = 4
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Inserting (2.15) in the _�-equation of (2.13) and setting _� = 0 gives the expression
for 	es(�) :

	es(�) = 	s(�) +
5

H
	v(�)� 8W

H
2

�
1� W 2

3H2
2

�
�; (2.16)

2The complete derivation is shown in Appendix C.
3This depends on the numerical value of B. Greitzer and Moore (1986) showed that small B

gives rotating stall, and large B gives surge.
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where

	s(�) =  c0 +H

 
1� 3

2

�
�

W
� 1

�
+
5

2

�
�

W
� 1

�3!
(2.17)

is the stall characteristic found when the CCV is not present. In Figure 2.4 the
various characteristics are shown. As can be seen, the throttle line intersects 	c in
a point of positive slope, that is in the unstable area of the compressor map, and
the compressor would go into rotating stall or surge. By introducing the CCV, the
throttle line crosses the equivalent characteristic 	e in an area of negative slope.
This new equilibrium is thus stable.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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0.5
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�

	

	c(�)

	e(�)

	v(�)

	s(�)

	es(�)

��1(�)

Figure 2.4: Compressor and throttle characteristics.

2.2.4 Change of Variables

The equilibrium of the compression system without the presence of the valve, is
at the intersection of the compressor characteristic 	c(�) and the throttle char-
acteristic �T (	). When introducing the CCV into the system, the equilibrium is
shifted to the intersection of the equivalent compressor characteristic 	e(�) and
the throttle characteristic �T (	). The equilibrium values are then related through

 0 = ��1
T
(�0): (2.18)
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�

	

 0

�0

�̂

 ̂

	v(�)

	0
c(�)

	e(�)

��1
T (�)

 ̂co

 ̂co

Figure 2.5: Change of variables, principal drawing

To prepare for the analysis of the system, it is desirable to perform a change of
coordinates on the system equations so that the origin becomes the equilibrium
under study. The new coordinates are de�ned as

 ̂ = 	�  0 (2.19)

�̂ = �� �0:

The system characteristics in the new coordinates are de�ned as

	̂e(�̂) = 	e(�̂ + �0)�	e(�0)

= 	e(�̂ + �0)�  0 (2.20)

	̂0
c
(�̂) = 	c(�̂+ �0)�  0 (2.21)

	̂v(�̂) = 	v(�̂+ �0)�  0 (2.22)

�̂T ( ̂) = �T ( ̂ +  0)� �0: (2.23)



2.2 Preliminaries 21

Using (2.7), the transformed compressor characteristic (2.21) can be calculated as

	̂0
c
(�̂) =  ̂co � k3�̂

3 � k2�̂
2 � k1�̂; (2.24)

where

 ̂co =  co �  0 � �20H

2W 2

�
�0

W
� 3

�
; (2.25)

k1 =
3H�0
2W 2

�
�0

W
� 2

�
; (2.26)

k2 =
3H

2W 2

�
�0

W
� 1

�
; (2.27)

k3 =
H

2W 3
: (2.28)

It can be recognized that k3 > 0, while k1 � 0 if the equilibrium is in the unstable
region of the compressor map and k1 > 0 otherwise. The sign of k2 may vary. If
�0 > W then k2 > 0, and if �0 < W then k2 < 0.

Using the de�nition of the equivalent compressor (2.10) and the de�nition of  0
in (2.18), it can be shown that

 0 =  co � �20H

2W 2

�
�0

W
� 3

�
�	v(�0): (2.29)

Combining (2.29) with (2.25) we get the simple result

 ̂co = 	v(�0); (2.30)

which could have been seen directly from Figure 2.5.

The Moore-Greitzer model (2.13) can now be written in the new coordinates as

_̂
 =

1

4B2lc

�
�̂� �̂T ( ̂)

�
(2.31)

_̂
� =

1

lc

�
	̂0
c
(�̂)�  ̂ � 	̂v(�̂)�  0 � 3H

4
J

�
�

W
� 1

�
� W 2J

2
2

�

_J = %J

"
1�

�
�

W
� 1

�2
� J

4

#
� 4W%

3H
2
J�;

By de�ning
	̂0
c
(�̂) = 	v(�0) + 	̂c(�̂); (2.32)

where

	̂c(�̂)
4
= �k3�̂3 � k2�̂

2 � k1�̂; (2.33)

the model (2.31) can be written
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_̂
 =

1

4B2lc

�
�̂� �̂T ( ̂)

�
(2.34)

_̂
� =

1

lc

�
	̂c(�̂)�  ̂ � u� 3H

4
J

�
�

W
� 1

�
� W 2J

2
2

�

_J = %J

"
1�

�
�

W
� 1

�2
� J

4

#
� 4W%

3H
2
J�;

where the control u has been selected as

u = 	̂v(�̂) +  0 �	v(�0) = 	v(�)�	v(�0): (2.35)

In the case of pure surge, the model (2.34) reduces to

_̂
 =

1

4B2lc
(�̂� �̂T ( ̂)) (2.36)

_̂
� =

1

lc
(	̂c(�̂)� u�  ̂)

Simon and Valavani (1991) suggested using the pressure drop across the valve as
the control variable u. This approach will also be taken here. Our aim will be to
design a control law u for the valve such that the compressor can be operated also
on the left side of the original surge line without going into surge or rotating stall.
That is, we are going to use feedback to move the surge line towards lower values
of �, and thus expand the useful range of mass 
ows over which the compressor
can be safely operated.

As the pressure di�erence across the valve always will be a pressure drop, the
valve must be partially closed during stable operation in order for the control u to
attain both positive and negative values. It is also evident that there must exist
a pressure drop over the valve when the compressor is operated in a previously
unstable area. The price paid for a larger operating range, is some pressure loss
at low mass 
ows. A further discussion of the steady state pressure loss can be
found in Simon and Valavani (1991).

2.2.5 Disturbances

As in all types of physical systems, disturbances will occur in the compression
system. Greitzer and Moore (1986) stated that this is a topic that need more
study, at least in the case of the disturbances initiating stall and surge. Some
research have been done in this area. Hynes and Greitzer (1987), DeLaat et al.
(1996) and others have studied the e�ect of circumferential inlet distortion on the
stability properties, and Simon and Valavani (1991), Haddad et al. (1997) and
others studied mass 
ow and pressure disturbances. From a control theory point
of view it is also important to investigate what performance the closed loop system
will have when disturbances is taken into account.
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As in Simon and Valavani (1991), the e�ect of a pressure disturbance 	̂d(�), and
a 
ow disturbance �̂d(�) will be considered here. The pressure disturbance, which
may arise from combustion induced 
uctuations when considering the model of a
gas turbine, will accelerate the 
ow. As pointed out by van de Wal and Willems
(1996), the 
ow disturbances may arise from processes upstream of the compressor,
other compressors in series or an air cleaner in the compressor duct. In the case
of an aircraft jet engine, large angle of attack or altitude variations may cause
mass 
ow disturbances according to van de Wal and Willems (1996) and DeLaat
et al. (1996). Also, DeLaat et al. (1996) reports of a number of aircraft maneuvers
(full-rudder sideslips, wind-up turns, etc.) causing inlet air
ow disturbances in
the jet engine of a F-15 �ghter.

In the analysis of Simon and Valavani (1991) �̂d(�) is set to zero. Disturbances
in stall/surge control is also studied by Haddad et al. (1997), with disturbances
assumed to converge to zero. Here, both types of disturbances, mass 
ow and
pressure, will be considered. The disturbances are time varying, and the only
assumption made at this point is boundedness, that is k�̂dk1 and k	̂dk1 exists.
In addition to time varying disturbances, constant, or slow varying, o�sets will be
introduced into the model. This is of particular interest when e.g. a constant neg-
ative mass 
ow disturbance pushes the equilibrium over the surge line, initiating
surge or rotating stall. The o�sets in mass 
ow and pressure rise is termed d� and
d , respectively. The constant bias d in pressure can also be thought of as re-


ecting some uncertainty in the compressor characteristic 	̂c(�̂), and likewise and
the mass 
ow bias d� can be thought of as re
ecting a uncertainty in the throttle

characteristic �̂( ̂). A study of surge/stall control for compressors with uncertain
compressor characteristic was also done by Leonessa et al. (1997b). With these
disturbances the model becomes:

_̂
 =

1

4B2lc

�
�̂� �̂T ( ̂)� �̂d(�)� d�

�
(2.37)

_̂
� =

1

lc

�
� ̂ + 	̂c(�̂)� 	̂v(�̂) + 	̂d(�) + d 

�3HJ

4

�
�

W
� 1

�
� W 2J

2
2

�

_J = %J

 
1�

�
�

W
� 1

�2
� J

4

!
� 4W%

3H
2
J�;

and in the case of pure surge

_̂
 =

1

4B2lc

�
�̂� �̂T ( ̂)� �̂d(�) � d�

�
(2.38)

_̂
� =

1

lc

�
� ̂ + 	̂c(�̂)� 	̂v(�̂) + 	̂d(�) + d 

�
: (2.39)
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2.3 Surge Control

In this section controllers will be designed for the pure surge case. First the
undisturbed case is studied, then disturbances are added, and �nally adaption will
be used to stabilize the system in the presence of constant disturbances.

2.3.1 Undisturbed Case

Theorem 2.1 The controller

u = c2(�� �0); (2.40)

where c2 > am and am is the maximum positive slope of the compressor charac-

teristic 	̂c(�̂), renders the equilibrium (�0;  0) of (2.14) GAS. �

Proof: The backstepping methodology of Krsti�c et al. (1995a) will be employed
in deriving the control law.

Step 1. Two error variables are de�ned as z1 =  ̂ and z2 = �̂ � �. The control
Lyapunov function (clf) for this step is chosen as

V1 = 2B2lcz
2
1 (2.41)

with time derivative along the solution trajectories of (2.36) given by

_V1 = z1

�
��̂T (z1) + z2 + �

�
: (2.42)

The throttle is assumed passive, that is  ̂�̂T ( ̂) � 0 8 ̂. We have

 ̂�̂T ( ̂) � 0 ) �z1�̂T (z1) � 0 (2.43)

As it is desirable to avoid cancelation of useful nonlinearities in (2.42), the stabi-
lizing function � is not needed and accordingly � = 0, which gives

_V1 = ��̂T (z1)z1 + z1z2: (2.44)

Although the virtual control � is not needed here, in the interest of consistency
with the following sections, this notation is kept.

Step 2.The derivative of z2 is

_z2 =
1

lc

�
	̂c(z2)� z1 � u

�
: (2.45)

The clf for this step is

V2 = V1 +
lc

2
z22 (2.46)
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with time derivative

_V2 = �z1�̂T (z1) + z2

�
	̂c(z2)� u

�
: (2.47)

Notice that V2 as de�ned by (2.46) is similar to the incremental energy of Simon
and Valavani (1991).

Control law. The control variable u will be chosen so that (2.47) is made negative
de�nite. To this end we de�ne the linear control law

u = c2z2; (2.48)

where the controller gain c2 > 0 is chosen so that

z2	c(z2)� c2z
2
2 < 0: (2.49)

Using (2.33) this implies that c2 must satisfy

�k3z22
�
z22 +

k2

k3
z2 +

k1 + c2

k3

�
< 0: (2.50)

Finding the roots of the above bracketed expression, it is seen that (2.50) is satis�ed
if c2 is chosen according to

c2 >
k22
4k3

� k1: (2.51)

Although (2.51) implies that the compressor characteristic must be known in order
to determine c2, it can be shown that the knowledge of a bound on the positive
slope of the characteristic is su�cient. Di�erentiating (2.33) twice with respect to

�̂, reveals that the maximum positive slope occurs for

�̂ = �̂m = � k2

3k3
(2.52)

and is given by

a =
d	̂c(�̂)

d�̂

�����
�̂=�̂m

=
k22
3k3

� k1 =
3H

2W
: (2.53)

Assuming that only an upper bound am on the positive slope of 	̂c(�̂) is known,
a conservative condition for c2 is

c2 > am � a >
k22
4k3

� k1: (2.54)

Thus the price paid for not knowing the exact coe�cients of the compressor char-
acteristic is a somewhat conservative condition for the controller gain c2. Notice
also that no knowledge of Greitzer's B-parameter or its upper bound is required
in formulating the controller. The �nal expression for _V2 is then

_V2 = �z1�̂T (z1) + 	̂c(z2)z2 � c2z
2
2 = �W (z1; z2) � 0: (2.55)
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The closed loop system can be written as

_z1 =
1

4B2lc
(��̂T (z1) + z2) (2.56)

_z2 =
1

lc
(�z1 + 	̂(z2)� c2z2): (2.57)

It follows that the equilibrium point z1 = z2 = 0 is GAS, and the same result
holds for the equilibrium (�0;  0). �

Remark 2.1 By combining (2.82) and (2.48), the following control law for the

CCV gain is found:

c2(�� �0) = 	v(�)�	v(�0) (2.58)

+


 =

r
�+ �0

c2
: (2.59)

Notice that this control law requires measurement of mass 
ow only. �

Remark 2.2 Although not showing stability, Bendixon's criterion can be used to

show that the controller (2.48) guarantees that no limit cycles (surge oscillations)

exists. Bendixon's criterion states (somewhat simpli�ed) that no limit cycles ex-

ists in a dynamical system de�ned on a simply connected region D � IIR2 if the

divergence of the system is not identically zero and does not change sign in D. For

an exact statement of Bendixon's criterion and the proof, see any textbook on dy-

namical systems, e.g. Perko (1991). The divergence r �f of the system _x = f (x)
de�ned by (2.14) is

r � f = � 1

4B2lc

@�̂T ( ̂)

@ ̂
+

1

lc

 
@ ̂c(�̂)

@�̂
� @u

@�̂

!
: (2.60)

The slope of the throttle is always positive, so the �rst term in (2.60) is always

negative. To make the second term also negative, it is su�cient that @u
@�̂

dominates

@ ̂c(�̂)

@�̂
, which is exactly what is ensured by the controller in Theorem 2.1. Thus,

according to Bendixon's criterion, no surge oscillations can exist for the closed

loop system. �

2.3.2 Determination of �0

As a consequence of the controller (2.40) being designed after the system equations
are transformed to the new coordinates, its implementation depends on knowledge
of the equilibrium value �0. The equilibrium is located at the intersection of the
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equivalent compressor characteristic 	e(�) and the throttle characteristic ��1
T
.

By combining (2.82), (2.40) and (2.59), it is seen that

	v(�0) = (u+	v(�0))j�=�0
=

�
c2(�� �0) +

c2

�+ �0
�20

�����
�=�0

=
c2�0

2
: (2.61)

At the equilibrium, we have

	c(�0)�	v(�0) =
1


2
�20; (2.62)

or by using (2.61), �0 is found by solving the following 3rd order equation

 co +H

 
1 +

3

2

�
�0

W
� 1

�
� 1

2

�
�0

W
� 1

�3!
� c2�0

2
=

2


2
�20; (2.63)

with respect to �0, and its value is to be used in the control law (2.40). Solving
(2.63) requires knowledge of the compressor characteristic. If this is not the case,
alternatives to �nding �0 explicitly is, using an adaption scheme like the one
suggested by Bazanella et al. (1997) or it is possible to use throttle control in
addition to the CCV control to control � using �0 as the reference. If none of
these alternatives are attractive, an approximation for �0 can be used. In this case,
asymptotic stability cannot be shown, but convergence to a set and avoidance of
surge is easily shown. De�ning �� as

�� = �0 � �aprx; (2.64)

where �aprx is the approximation used for feedback, and �0 is the actual and
unknown value of the equilibrium. By using the same Lyapunov function as is
Theorem 2.1, and

u = c2(�� �aprx) = c2(�� �0 +��); (2.65)

the time derivative of V2 is found and upper bounded by

_V2 � �z1�̂(z1) + z2(	̂c(z2)� c2z2)z2 � z2c2��: (2.66)

Application of Young's inequality4 to the last term in (2.66) gives

�z2c2�� � c2

2

�
z22
�0

+ (��)2�0

�
; (2.67)

4In its simplest form Young's inequality states that

8a; b : ab �
1

2
(
a2

c
+ cb2) 8c > 0:
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where �0 is a constant, and it follows that

_V2 � �z1�̂T (z1) + z2(	̂c(z2)� c2(1� 1

2�0
)z2)z2 + �0(��)

2

= �W (z1; z2) + �0(��)
2; (2.68)

where the de�nition of W is obvious. By choosing �0 and c2 such that

c2(1� 1

2�0
) > am; (2.69)

is satis�ed, it can be shown thatW (z1; z2) is radially unbound and positive de�nite.
Thus, _V2 < 0 outside a set R�. This set can be found in the following manner:
According to Krsti�c et al. (1995a), the fact that V2(z1; z2) andW (z1; z2) is positive
de�nite and radially unbounded, and V2(z1; z2) is smooth, implies that there exists
class-K1 functions �1, �2 and �3 such that

�1(jzj) � V2(z) � �2(jzj) (2.70)

�3(jzj) � W (z) (2.71)

where z = (z1 z2)
T. Following the proof of Lemma 2.26 in Krsti�c et al. (1995a),

we have that the states of the model are uniformly ultimately bounded, and that
they converge to the residual set

R� =

(
z : jzj � ��11 � �2 � ��13

�
�(��)2

�)
: (2.72)

From (2.68) it follows that _V2 is negative whenever W (z) > �0(��)
2. Combining

this with (2.71) it can be concluded that

jz(�)j > ��13

�
�(��)2

� ) _V2 < 0: (2.73)

This means that if jz(0)j � ��13

�
�(��)2

�
, then

V2(z(�)) � �2 � ��13

�
�(��)2

�
; (2.74)

which in turn implies that

jz(�)j � ��11 � �2 � ��13

�
�(��)2

�
: (2.75)

If, on the other hand jz(0)j > ��13

�
�(��)2

�
, then V2(z(�)) � V2(z(0)), which

implies
jz(�)j � ��11 � �2(jz(0)j): (2.76)

Combining (2.75) and (2.76) leads to the global uniform boundedness of z(�):

kzk1 � max
�
��11 � �2 � ��13

�
�(��)2

�
; ��11 � �2(jz(0)j)

	
; (2.77)

while (2.73) and (2.70) prove the convergence of z(�) to the residual set de�ned
in (2.72).

It is trivial to establish the fact that no limit cycles, and hence surge oscillations,
can exist inside this set using Bendixon's criterion. It is seen from (2.72), that the
size of the set R� is dependent on the square of the equilibrium estimate error ��
and the parameter �0. A more accurate estimate �aprx, or a smaller value of �0,
both implies a smaller set. A smaller value of �0 will, by equation (2.69), require
a larger controller gain c2, which is to be expected.
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2.3.3 Time Varying Disturbances

First, time varying pressure disturbances will be considered. That is, �̂d(�), d�
and d are set to zero as in Simon and Valavani (1991).

Theorem 2.2 (Time varying pressure disturbances)

The controller

u = (c2 + d2)(�� �0); (2.78)

where c2 is chosen as in Theorem 2.1, and d2 > 0 guarantees that the states of the
model (2.38) are globally uniformly bounded, and that they converge to a set. �

Proof: The controller will be derived using backstepping.

Step 1. Identical to Step 1 in proof of Theorem 2.1.

Step 2. The derivative of z2 is

_z2 =
1

lc

�
	̂c(�̂)� z1 + 	̂d(�)� u

�
: (2.79)

V2 is chosen as

V2 = V1 +
lc

2
z22 (2.80)

where _V2 can be bounded according to

_V2 = ��̂T (z1)z1 + z2

�
	̂c(�̂) + 	̂d(�)� u

�
: (2.81)

Control law. To counteract the e�ect of the disturbance, a damping factor d2 > 0
is included and u is chosen as

u = c2z2 + d2z2: (2.82)

c2 is chosen so that (2.54) is satis�ed. Inserting (2.82) in (2.81) gives

_V2 = �z1�̂T (z1) + 	̂c(z2)z2 � c2z
2
2 + 	̂d(�)z2 � d2z

2
2 : (2.83)

Use of Young's inequality gives

z2	̂d(�) � d2z
2
2 +

	̂2
d
(�)

4d2
� d2z

2
2 +

k	̂dk21
4d2

; (2.84)

and _V2 can be bounded according to

_V2 � �W (z1; z2) +
	̂2
d
(�)

4d2
� �W (z1; z2) +

1

4d2
k	̂dk21 (2.85)
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where
W (z1; z2) = z1�̂(z1)� (	̂c(z2)z2 � c2z

2
2) (2.86)

is radially unbounded and positive de�nite. This implies that _V2 < 0 outside a set
R1 in the z1z2 plane.

By using (2.70) and (2.71) again, it follows from similar calculations as in (2.73)-
(2.77), that z(�) is globally uniformly bounded and that z(�) converges to the
residual set

R1 =

(
z : jzj � ��11 � �2 � ��13

 
k	̂dk21
4d2

!)
: (2.87)

�

Remark 2.3 Notice that the controller (2.82) is essentially the same as (2.48),

with the only di�erence being that (2.82) requires a larger gain in order to suppress

the disturbance. Consequently, Remark 2.1 also applies here. �

It is now shown that an additional assumption on the disturbance ensures that
the controller (2.82) not only makes the states globally uniformly bounded, but
also guarantees convergence to the origin.

Corollary 2.1 (Convergence to the origin)

If the disturbance term 	̂d(�) is upper bounded by a monotonically decreasing

non-negative function 	d(�) such that

j	̂d(�)j � 	d(�) 8� � 0 (2.88)

and

lim
�!1

	d(�) = 0; (2.89)

the controller (2.82) ensures that the states of the model (2.38), with pressure dis-

turbances, converge to the origin. �

Proof: Inspired by the calculations for a simple scalar system starting on page 75
in Krsti�c et al. (1995a) , we introduce the signal

s(z; �) = V2(z)e
c�; (2.90)

where c > 0 is a constant, for use in the proof:

d

dt
s(z; �) =

d

dt

�
V2(z)e

c�
	

=
�
_V2(z) + cV2(z)

�
ec�

�
 
�W (z) +

	̂2
d
(�)

4d2
+ cV2(z)

!
ec�

� (��3(jzj) + c�2(jzj)) ec� + 	̂2
d
(�)

4d2
ec�: (2.91)
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By choosing c according to

c � ��12 � �3(jzj) � ��12 � �3(kzk1); (2.92)

where the existence of kzk1 follows from (2.87), (2.91) gives

d

dt

�
V2(z)e

c�
	 � 	̂2

d
(�)

4d2
ec�: (2.93)

By integrating (2.93) and using an argument similar to the one in the proof of
lemma 2.24 in Krsti�c et al. (1995a), it can be shown that

V2(z(�)) � V2(z(0))e
�c� +

1

4cd2

�
	d

2
(0)e�

c�

2 +	d
2
(�=2)

�
: (2.94)

Since lim�!1	d
2
(�=2) = 0 it follows that

lim
�!1

V2(z(�)) = 0: (2.95)

As V2 is positive de�nite it follows that

lim
�!1

z(�) = 0: (2.96)

Thus we have shown that under the additional assumptions (2.88) and (2.89) on

the disturbance term, z(�) converges to the origin. This also implies that �̂ and  ̂
converge to the origin and that �(�) and 	(�) converge to the point of intersection
of the compressor and throttle characteristic. �

Notice that the positive constant c introduced in (2.90) is used for analysis only,
and is not included in the implementation of the control law.

At this point we include the 
ow disturbance �̂d(�) in the analysis.

Theorem 2.3 (Time varying pressure and 
ow disturbances)

The controller

u = c2z2 � k3
�
�3 + 3�z22

�� k2�̂
2 � k1�

+
d1

4B2

�
��̂T (z1) + �̂

�
+ d2z2

�
1 +

d21
4B2

�
; (2.97)

where c2 > jk1j guarantees that the states of the model (2.37) with both mass 
ow

disturbances and pressure disturbances is globally uniformly bounded and that they

converge to a set. �

Proof: The backstepping procedure is as follows:
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Step 1. As before two error variables z1 and z2 are de�ned as z1 =  ̂ and z2 = �̂��.
Again, V1 is chosen as

V1 = 2B2lcz
2
1 ; (2.98)

with time derivative

_V1 = z1

�
��̂T (z1) + z2 � �̂d(�) + �

�
; (2.99)

where (2.37) is used. The virtual control � is chosen as

� = �d1z1; (2.100)

where �d1z1 is a damping term to be used to counteract the disturbance �̂d(�).
_V1 can now be written as

_V1 = �d1z21 + z1z2 � �̂d(�)z1 � �̂T (z1)z1; (2.101)

and upper bounded according to

_V1 � ��̂T (z1)z1 + z1z2 +
k�̂dk21
4d1

: (2.102)

To obtain the bound in (2.102), Young's inequality has been used to obtain

��̂d(�)z1 � d1z
2
1 +

�̂2
d
(�)

4d1
� d1z

2
1 +

k�̂dk21
4d1

: (2.103)

Step 2. The derivative of z2 is

_z2 =
1

lc

�
	̂c(�̂)� z1 + 	̂d(�)� @�

@z1

1

4B2lc

�
��̂T (z1) + �̂

�

+
1

4B2lc

@�

@z1
�̂d(�)� u

�
: (2.104)

From (2.100) it is seen that
@�

@z1
= �d1: (2.105)

V2 is chosen as

V2 = V1 +
lc

2
z22 : (2.106)

Using (2.102) and (2.104), an upper bound on _V2 is

_V2 � ��̂T (z1)z1 + k�̂dk21
4d1

+ z2

�
	̂c(�̂) + 	̂d(�)

+
d1

4B2

�
��̂T (z1) + �̂

�
� d1

4B2
�̂d(�)� u

�
: (2.107)

Control law. To counteract the e�ect of the disturbances, a damping factor d2
must be included and u is chosen as

u = c2z2 � k3
�
�3 + 3�z22

�� k2�̂
2 � k1�

+
d1

4B2

�
��̂T (z1) + �̂

�
+ d2z2

�
1 +

d21
4B2

�
: (2.108)
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The parameter c2 is now chosen according to

c2 > jk1j: (2.109)

Inserting (2.97) in (2.107) gives

_V2 � �(c2 + k1)z
2
2 � k3(z

4
2 + 3�2z22)� �̂T (z1)z1 +

k�̂dk21
4d1

�d2z22 + jz2jk	̂dk1 +
d1

4B2
jz2jk�̂dk1 � d21

4B2
d2z

2
2 : (2.110)

Using Young's inequality twice gives

jz2jk	̂dk1 � d2z
2
2 +

k	̂dk21
4d2

(2.111)

d1

4B2
jz2jk�̂dk1 � 1

4B2

 
d21d2z

2
2 +

k�̂dk21
4d2

!
: (2.112)

The �nal upper bound for V2 can now be written as

_V2 � �W (z1; z2) +
1

�1
k�̂dk21 +

1

�2
k	̂dk21 (2.113)

where
1

�1
=

�
1

4d1
+

1

16B2d2

�
;
1

�2
=

1

4d2
(2.114)

and
W (z1; z2) = (c2 + k1)z

2
2 + k3(z

4
2 + 3�2z22) + �̂(z1)z1 (2.115)

is radially unbounded and positive de�nite. This implies that _V2 < 0 outside a set
R2 in the z1z2 plane. As in section 6.1, the functions V2(z) and W (z) exhibit the
properties in (2.70). Again, it can be shown that this implies that z(�) is globally
uniformly bounded and that z(�) converges to the residual set

R2 =

(
z : jzj � ��11 � �2 � ��13

 
k	̂dk21
�1

+
k�̂dk21
�2

!)
: (2.116)

�

Remark 2.4 Notice that the control law (2.97), as opposed to (2.82), requires

knowledge of the coe�cients in the compressor characteristic, the throttle charac-

teristic and the B-parameter. �

Remark 2.5 Once the bounds on the disturbances k�̂dk1 and k	̂dk1 are known,

the size of the set R2 in the z1z2 plane can be made arbitrary small by choosing

the damping factors d1 and d2 su�ciently large. The same comment applies to the

set R1 de�ned in (2.87). �
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Corollary 2.2 (Convergence to the origin)

If the assumptions on 	̂d(�) in equations (2.117) and (2.118) hold, and the fol-

lowing assumption on �̂d(�) is made:

j�̂d(�)j � �d(�) 8� � 0 (2.117)

and

lim
�!1

�d(�) = 0; (2.118)

where �d(�) is a monotonically decreasing non-negative function. Then, the states
of the model (2.38) converge to the origin. �

Proof: By using the same arguments as in the proof of Corollary 2.1, but with
two disturbance terms, it can be shown that

V2(z(�)) � V2(z(0))e
�c� +

1

c�1

�
�d

2
(0)e�

c�

2 +�d
2
(�=2)

�
+

1

c�2

�
	d

2
(0)e�

c�

2 +	d
2
(�=2)

�
: (2.119)

Now lim�!1	d
2
(�=2) = 0 and lim�!1 �d

2
(�=2) = 0 implies that

lim�!1 V2(z(�)) = 0 and by the positive de�niteness of V2 it follows that

lim
�!1

z(�) = 0: (2.120)

Thus we have shown that under the assumptions (2.88), (2.89), (2.117) and (2.118)

on the disturbance terms, z(�) converge to the origin. This also implies that �̂(�)

and  ̂(�) converges to the origin and that �(�) and 	(�) converge to the point of
intersection of the compressor and throttle characteristic. �

A simulation of the response of the control law (2.97) with both mass 
ow and
pressure disturbances is presented in Chapter 3, where it is compared to a passivity
based controller.

2.3.4 Adaption of Constant Disturbances

A constant or slow varying disturbance in mass 
ow can cause the equilibrium
of the compression system to be moved into the unstable area of the compressor
map. Therefore, the problem of being able to stabilize the system in this case is
a very important one. In addition constant disturbances in pressure is considered
simultaneously. Consider the following model

_̂
 =

1

4B2lc

�
�̂� �̂T ( ̂)� d�

�
_̂
� =

1

lc

�
	̂c(�̂)�  ̂ + d � u

�
; (2.121)
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where d� and d are constant and unknown disturbances in mass 
ow and pres-
sure, respectively. Godhavn (1997) used adaptive backstepping for adaption of
constant or slow varying sea current disturbances in a surface ship model. The
same approach will now be employed here to stabilize (2.121). Two adaption laws
will be designed in order to estimate the unknown disturbances and allow them
to be counteracted by the control.

Theorem 2.4 The controller

u =
lc

#1
z1 + c2z2 � k3

�
d
3

�
+ 3d�z

2
2

�
� k2�̂

2 � k1d� + d ; (2.122)

where the estimates d� and d are updated with

_d� = � 1

#1
z1 (2.123)

_
d = � 1

#2
z2; (2.124)

where 1
#1

and 1
#2

are adaption gains, makes the equilibrium of (2.121) globally

asymptotically stable. The states of the model converge to their equilibrium values

and the parameter error dynamics are GAS. asymptotically stable. �

Proof: Backstepping is used

Step 1. The error variables z1 and z2 are de�ned as z1 =  ̂ and z2 = �̂ � �. The
�rst clf, V1, is chosen as

V1 = 2B2lcz
2
1 +

#1

2
~d2
�
; (2.125)

where
~d�

4
= d� � d�; (2.126)

is the parameter error and d� is an estimate of d�. The time derivative of V1 now
is

_V1 = z1

�
��̂T (z1) + z2 � d� + �

�
� #1 ~d�

_d�; (2.127)

where (2.121) is used. Let the virtual control � be chosen as

� = d�; (2.128)

and the estimate d� be updated as

_d� = � 1

#1
z1: (2.129)

Thus, the terms including ~d� in (2.127) are cancelled out, and _V1 can now be
written as

_V1 = z1z2 � �̂T (z1)z1: (2.130)
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Step 2. The second clf is chosen as

V2 = V1 +
lc

2
z22 +

#2

2
~d2
 
=

1

2
zTPz +

1

2
~d
T
��1~d; (2.131)

where
~d 

4
= d � d ; (2.132)

is the parameter error, d is an estimate of d ,

~d = ( ~d� ~d ); P =

�
4B2lc 0
0 lc

�
; and ��1 =

�
#1 0
0 #2

�
: (2.133)

Using (2.121), _V2 is calculated as

_V2 = ��̂(z1)z1 + z2(	̂c(�̂)� u+
lc

#1
z1 + d )� #2 ~d 

_
d : (2.134)

Let the estimate d be updated as

_d =
1

#2
z2; (2.135)

and the control be chosen as

u =
lc

#1
z1 + c2z2 � k3

�
�3 + 3�z22

�� k2�̂
2 � k1�+ d : (2.136)

Using the calculations from the case of time varying disturbances it can be shown
that _V2 can be upper bounded as

_V2 � �(c2 + k1)z
2
2 � k3(z

4
2 + 3�2z22)� �̂T (z1)z1 (2.137)

By inserting the update laws (2.129) and (2.135) and the control (2.136) in equa-
tions (2.121), it can be shown that the error dynamics get the following form

_z = P�1
�
Az(z;d) +P zz + ~d

�
(2.138)

_~d = ��z; (2.139)

where

Az(z;d) =

�
��̂T (z1)

�c2z2 � k3(z
3
2 + 3�2z2)

�
and P z =

�
0 1
�1 0

�
: (2.140)

The stability result follows from application of LaSalle's theorem. From (2.137) it
is seen that

_V2 � 0) z � 0) _z � 0: (2.141)

Inserting (2.141) into (2.138) we �nd that ~d � 0. Thus the origin of (2.138) is
GAS. �

This result could also have been stated by using the more general Theorem 4.12
in Krsti�c et al. (1995a) or the results in Krsti�c (1996).
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Remark 2.6 The stability properties of the proposed scheme of two parameter

update laws and control law, can also be established through passivity analysis of

the error dynamics.

The model (2.138)-(2.139) has some useful properties that will be taken advantage

of in the stability proof: The vector �Az consists of sector nonlinearities, the

matrices C and � are both diagonal and positive de�nite, and the matrix P z is

skew symmetric. Consider the positive function

S(z) =
1

2
zTPz (2.142)

and calculate the time derivative of (2.142) along solution trajectories of (2.138):

d

dt
S(z) = zTP _z

= zT
�
Az(z;d) +P zz + ~d

�
= zTAz(z;d) + z

T~d: (2.143)

The last step follows from the fact that P z is skew symmetric. As both elements

in Az(z;d) are sector nonlinearities, the following inequality will always hold:

�zTAz(z;d) > 0: (2.144)

Integrating (2.143) from 0 to t and using (2.144) results in

Z
t

0

zT(�)~d(�)d� = S(z(�))� S(z(0)) +

Z
t

0

�zTAz(z;d)d�: (2.145)

From this dissipation inequality it is concluded that the mapping ~d 7! z is strictly

passive with S(z) = zTPz as storage function and �zTAz(z;d) as dissipation

rate. Inspection of (2.139) reveals that the mapping z 7! �~d is a passive integrator,

and thus the system (2.138)-(2.139) is a negative feedback interconnection of a

strictly passive and a passive system. This implies that the equilibrium (z; ~d) =
(0;0) is globally uniformly stable and that z(�) converges to the origin as t!1.

The structure of the system is shown in Figure 2.6. �

Remark 2.7 The result of this section also holds if either of the two constant

disturbances are set to zero. In the case of d� � 0 and d 6= 0, the controller

(2.122) with parameter update law (2.124) is equivalent to an ordinary linear PI-

control law in z2:

u = c2z2 �
Z
t

0

1

#2
z2(�)d�: (2.146)

By the same arguments as in the above proof, z = 0 is GAS and d =
R
t

0
1
#2
z2(�)d�

converges to the true value of d . �
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h

,,,
lll

~d z

�

_z = C(Az(z;d) + Pz + ~d)

�

Figure 2.6: Negative feedback interconnection of strictly passive system with passive

system

2.4 Control of Rotating Stall

In this section CCV controllers will be derived for the full Moore-Greitzer model
(2.34). As in the section on surge control, two cases will be studied here as well.
First, a stabilizing stall/surge controller is designed for the undisturbed model.
Then, pressure disturbances are included in the model, and a second controller
is derived. For use in the stability proofs of this section, the following lemma is
needed:

Lemma 2.1 The squared amplitude of rotating stall has an upper bound:

9 Jmax <1 such that J(�) < Jmax 8 � > 0 (2.147)

�

Proof:

The proof is similar to that of section 2.4 in Krsti�c et al. (1995a):

_J = J

 
1�

�
�

W
� 1

�2
� J

4
� 1


2
4W�

3H

!
%;

= �J
2%

4
� %J

�
�2

W 2
� 2�

W

�
� %J

4W

3H
2
�

� �J
2%

4
+

2%

W
J j�j+ %J

4W

3H
2
j�j

� �J
2%

8
� %J

8

�
J � 16

W
j�j � 32W

3H
2
j�j
�

(2.148)

When J(�) > 16j�(�)j
�

1
W

+ 2W
3H
2

�
, J(�) will decay faster than the solution w(�)

of the di�erential equation

_w = �w
2%

8
; (2.149)
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so that an upper bound of J(�) is given by

J(�) <
J(0)

1 + J(0)%�
8

+ 16 sup
0��<�

j�(�)j
�

1

W
+

2W

3H
2min

�
4
= Jmax; (2.150)

where 
min > 0 is a lower bound on the throttle gain. Equation (2.150) states that
J is bounded if � is bounded. An upper bound on � is given by the choking of the
mass 
ow:

� � �choke; (2.151)

so that a conservative value for Jmax is

Jmax =
J(0)

1 + J(0)%�
8

+ 16�choke

�
1

W
+

2W

3H
2min

�
: (2.152)

�

The following assumption on the mass 
ow coe�cient is also needed:

Assumption 2.1 The lower bound on � is given by the minimum value obtained

during a deep surge cycle. This lower bound is negative, and is given by

9 �m > 0 such that �(�) > ��m8� > 0: (2.153)

�

The assumption is not a conservative one. Compressors in general are not intended
or designed for operation with reversed mass 
ow, so it is reasonable to assume
that the lowest value of mass 
ow is reached during the extreme condition of deep
surge, more precisely at the negative peak of a deep surge cycle.

2.4.1 Undisturbed Case

Theorem 2.5 Consider the system (2.34) evolving in the set

A =
�
	;�; J j 	 2 IIR; � 2 [��m; �choke]; J 2 IIR+

	
(2.154)

with the controller

u = (c2 + c3)(�� �0); (2.155)

where c2 > am and am is the maximum positive slope of the compressor charac-

teristic, and c3 > 0 is chosen according to

cmin3 < c3 < cmax3 : (2.156)

The origin of the closed loop system is then asymptotically stable with a region of

attraction equal to A. �
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Proof:

The backstepping methodology of Krsti�c et al. (1995a) is now employed to design
a controller for (2.34)

Step 1. Let the error variables z1 and z2 be chosen as

z1 =  ̂ and z2 = �̂� �; (2.157)

and the CLF for this step be
V1 = 2B2lcz

2
1 : (2.158)

The time derivative of V1 along solution trajectories is

_V1 = z1

�
��̂T (z1) + z2 + �

�
: (2.159)

As before, the throttle is assumed passive, such that  ̂�̂( ̂) � 0 8 ̂. It follows
that

 ̂�̂T ( ̂) � 0 ) �z1�̂T (z1) � 0: (2.160)

It is recognized that there is no need to cancel out terms in (2.159). Thus, the
stabilizing function � is not needed and can be chosen as � = 0, which in turn
gives

_V1 = ��̂T (z1)z1 + z1z2: (2.161)

Although � = 0 here, the notation of z1 and z2 is kept in the interest of consistency
with section 2.4.2

Step 2. The derivative of z2 is

_z2 =
1

lc

�
�z1 + 	̂c(z2)� 3H

4
J

�
�

W
� 1

�
� W 2J

2
2
� u

�
: (2.162)

The clf for this step is

V2 = V1 +
lc

2
z22 +

1

%Jmax
J; (2.163)

and _V2 is calculated as

_V2 = �z1�̂T (z1) + z2(	̂c(z2)� u) +
J

Jmax

 
1�

�
�

W
� 1

�2

�J
4
� 1


2
4W

3H
�

!
� 3H

4

�
�

W
� 1

�
z2J � W 2J

2
2
z2: (2.164)

By choosing u according to
u = (c2 + c3)z2; (2.165)

where c2 > 0 and c3 > 0 are constants, _V2 can be written

_V2 =

4X
i=1

�
_V2

�
i

: (2.166)
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The four terms in (2.166) are�
_V2

�
1

= �z1�̂T (z1); (2.167)�
_V2

�
2

= z2(	̂c(z2)� c2z2); (2.168)

�
_V2

�
3

=
J

Jmax

 
1�

�
�

W
� 1

�2
� 1


2
4W

3H
�

!
; (2.169)

�
_V2

�
4

= � � J z2
�
P (�)

�
J

z2

�
; (2.170)

where

P (�) =

"
1

4Jmax

3H
8

�
�
W
� 1
�
+ W

2

4
2

3H
8

�
�
W
� 1
�
+ W

2

4
2
c3

#
: (2.171)

Due to the passivity of the throttle,
�
_V2

�
1
< 0. As shown in section 2.3, if c2 is

chosen as

c2 > am � a >
k22
4k3

� k1; (2.172)

where am is the maximum positive slope of the compressor characteristic, then�
_V2

�
2
< 0.

By choosing the controller gains su�ciently large,
�
_V2

�
3
can be made negative

for � > 0. As the proposed controller (2.165) is of the same form as (2.40), the

expression (2.59) for 
, with gain (c2+ c3), can be used. For
�
_V2

�
3
to be negative

the following must be satis�ed

1�
�
�

W
� 1

�2
� 4W

3H

�(c2 + c3)

� + �0
< 0 (2.173)

+ � > 0

c2 + c3 >
3H

4W

�+ �0

�

 
�
�
�

W
� 1

�2
+ 1

!
(2.174)

c2 + c3 >
3H

4W
(� + �0)

�
2

W
� �

W 2

�
4
= G1(�) (2.175)

Simple calculations shows that the maximum of G1(�) is reached for � =W � �0

2
.

The maximum is given by

max
�>0

G1(�) =
3H

4W 2

�
�20
4W

+W + �0

�
: (2.176)

By choosing

c2 + c3 >
3H

4W 2

�
�20
4W

+W + �0

�
; (2.177)
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which implies

c3 >
3H

4W 2

�
�20
4W

+W + �0

�
� c2

4
= C1(c2); (2.178)

it follows that
�
_V2

�
3
is made negative for � > 0.

For � < 0 the sum
�
_V2

�
3
+
�
_V2

�
2
can be made negative for � > ��m, that is

z2(	̂c(z2)� c2z2) < � J

Jmax

 
1�

�
�

W
� 1

�2
� 1


2
4W

3H
�

!
(2.179)

Using (2.59) and J

Jmax
< 1, and rearranging (2.179) gives

c3

� + �0
� > G2(�; c2); (2.180)

where

G2(�; c2)
4
=

4W

3H

 
z2	̂c(z2)� c2z

2
2 + 1�

�
�

W
� 1

�2!
� c2

�+ �0
�: (2.181)

It can be shown that it is su�cient that (2.180) is satis�ed at the end points of
the interval:

G2(��m; c2) <
�m

�m � �0
c3 (2.182)

G2(0; c2) < 0: (2.183)

By inspection of (2.181) it is easily shown that (2.183) is always satis�ed. It is
assumed that �0 > �m, so that the condition in (2.182) can be rewritten as

c3 <
�m � �0

�m
G2(��m; c2) 4= C2(c2; �m): (2.184)

Plots of
�
_V2

�
2
,
�
_V2

�
3
and their sum are shown in Figure 2.7.

Finally, c3 must be chosen so that P is positive de�nite for ��m < � < �choke.
The determinant of P is given by

detP =
c3

4Jmax
�
�
3H

8

�
�

W
� 1

�
+
W 2

4
2

�2
> 0: (2.185)

A plot of detP is shown in the lower part of Figure 2.7. Again, a su�cient
condition for detP > 0 for ��m < � < �choke is that detP (�choke) > 0 and
detP (��m) > 0. As shown in Appendix E, this leads to the following conditions
on c3:

max
n
C3(c2; �choke); C4(c2; �m)

o
< c3 < min

n
C3(c2; �choke); C4(c2; �m)

o
(2.186)
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Figure 2.7: Upper plot illustrates that _V2 + _V3 < 0 for � > ��m. Lower plot

illustrates that detP > 0 for � < �choke.

Choosing c3 according to (2.186) ensures that�
_V2

�
4
< 0; ��m < � < �choke: (2.187)

The requirements (2.172), (2.178), (2.184) and (2.186) are summarized as

c2 > am � a >
k22
4k3

� k1; (2.188)

and

c3 > max
n
C1(c2); C3(c2; �choke); C4(c2; �m)

o
4
= cmin3 (2.189)

c3 < min
n
C2(c2; �m); C3(c2; �choke); C4(c2; �m)

o
4
= cmax3 (2.190)

Provided c2 and c3 are chosen according to (2.188) to (2.190), _V2 is upper bounded
as

_V2 � �U(z1; z2; J): (2.191)
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As V2 : A ! IIR, V2(0) = 0, V2 is positive de�nite and continuously di�erentiable
on A, and _V (z) < 0 for z 2 A � f0g, the origin of the system is asymptotically
stable with region of attraction equal to A. �

By doing the same calculations as in Remark 2.1, the control law for the CCV
gain is found to be:


 =

s
�+ �0

(c2 + c3)
: (2.192)

Notice that this control law requires sensing of mass 
ow � only. The analysis
leading to this control law was conservative, resulting in a large value of the pa-
rameter c3, that is c3 has to be chosen as c3 > cmin3 . As was the case in Krsti�c et
al. (1995b), the controller should be implemented with a lower gain than dictated
by the Lyapunov analysis. Consider the closed loop Jacobian of the model (2.34)
with control law (2.155):

Acl =

0
B@

� 1
4B2lc

a�
1

4B2lc
0

� 1
lc
� 3H

4lcW
1
lc
a	 � c2+c3

lc
0

0 0 %
�
� �

2
0

W 2 +
2�0
W

�
� 4W%(c2+c3)

6H

1
CA ; (2.193)

where

a	 =
@�̂T (z1)

@z1

�����
z1=0

and a� =
@	̂c(z2)

@z2

�����
z2=0

: (2.194)

It can be shown that if Acl is Hurwitz for c3 > cmin3 , Acl is also Hurwitz for c3 = 0.
The closed loop system is therefore locally stable with c3 = 0.

2.4.2 Disturbed Case

The backstepping procedure is now used to design a controller that ensures bound-
edness of the states in the presence of pressure disturbances.

Theorem 2.6 Consider the model (2.37) with time varying pressure disturbances

only, that is 	̂d(�) 6= 0 and �̂d(�) � 0, evolving on the set A. Let the controller u
be de�ned as

u = (c2 + c3)z2 + d2z2 (2.195)

where d2 > 0, c2 satis�es
c2 > am; (2.196)

where am is an upper bound on the positive slope of the compressor characteristic,

and c3 satis�es

cmin3 < c3 < cmax3 (2.197)

where cmin3 and cmax3 are de�ned in (2.189) and (2.190). Then (2.195) makes the

states of the model (2.37) uniformly ultimately bounded and ensures convergence

to a set. �
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Proof:

This result follows by combining the proofs of Theorem 2.3 and Theorem 2.5. The
Lyapunov function

V2 = V1 +
lc

2
z22 +

1

Jmax%
J (2.198)

will have an upper bound on its time derivative given by

_V2 � �U(z1; z2; J) + 	̂2
d
(�)

4d2
(2.199)

where

U(z1; z2; J) =

4X
i=1

�
_V2

�
i

: (2.200)

and the four terms
�
_V2

�
i

are given by (2.167)-(2.170) provided the control is

chosen as (2.195).

Provided c2 is chosen according to (2.188) and c3 satis�es (2.189) and (2.190),
then _V2 < 0 outside a set R3. According to Krsti�c et al. (1995a), the fact that
V2(z1; z2; J) is positive de�nite, radially unbounded and smooth, and U(z1; z2; J)
is positive de�nite for ��m < � < �choke implies that there exists class-K1
functions �1, �2 and a class-K function �3 such that

�1(jzj) � V2(z) � �2(jzj)
�3(jzj) � U(z)

�
(2.201)

where z = (z1; z2; J)
T. This implies that z(�) is uniformly ultimately bounded

and that z(�) converges to the set

R3 =

(
z : jzj � ��11 � �2 � ��13

 
k	̂dk21
�1

!)
: (2.202)

�

Remark 2.5 is also applicable to this case.

Remark 2.8 The case of stabilizing rotating stall in the case of disturbances in

mass 
ow as well as pressure rise, can be studied by combining Theorem 2.3 and

Theorem 2.5. It is straightforward to extend the results on convergence to the

origin and adaption of constant mass 
ow disturbances and pressure disturbances

from Section 2.3 to the control design in this section. �

2.5 Simulations

In this section, the proposed controllers of this chapter are simulated. Results
form both surge and stall control, with and without disturbances, will be shown.
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The compressor characteristic

	c(�) =  c0 +H

 
1 +

3

2

�
�

W
� 1

�
� 1

2

�
�

W
� 1

�3!
; (2.203)

of Moore and Greitzer (1986) is used in all simulations. The throttle will be set so
that the intersection of the throttle line and the compressor characteristic is located
on the part of the characteristic that has positive slope, resulting in an unstable
equilibrium. After some time, the controllers will be switched on, demonstrating
that the system is stabilized.

2.5.1 Surge Control

Surge control will now be demonstrated. A Greitzer parameter of B = 1:8 is used
in the simulations. The throttle gain is set to 
 = 0:61 and thus the equilibrium
is unstable. The initial conditions of the systems were chosen as

(�0;  0) = (0:6; 0:6): (2.204)

In Figure 2.8, it is shown how the controller (2.40) with c2 = 1 stabilizes the
system.

In Figure 2.9 noise has been added, and the system is stabilized by the controller
(2.97) with c2 = 1, d1 = 0:3 and d2 = 3.

A simulation of surge induced by a constant disturbance is showed in Figure 2.10.
The compression system is initially operating stably with a throttle setting of

 = 0:65 yielding a stable equilibrium. At � = 200 the constant disturbances
d� = �0:1 and d = 0:05 are introduced into the system, resulting in the state
of the system being pushed over the surge line. Consequently, surge oscillations
emerge. At � = 420 the adaptive controller (2.122) with update laws (2.123), and
as can be seen, the surge oscillations are brought to rest. The parameters of the
controller were c2 = 1:1, #1 = 9 and #2 = 20. The disturbances are unknown to
the controller, but as guaranteed by Theorem 2.4 their estimates converges to the
true values.
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Figure 2.8: The throttle gain is set to 
 = 0:61, and the compressor is surging.

The controllers are switched on at � = 200.
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Figure 2.10: Disturbance induced surge stabilized by the adaptive controller (2.122).
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Figure 2.9: Same situation as in Figure 2.8. However, here disturbances are taken

into account. The pressure and the mass 
ow disturbances are both white noise

varying between �0:05.

2.5.2 Rotating Stall Control

In this section some simulation results of the proposed controllers for rotating
stall are presented. In Figure 2.11 the response of system (2.34) with controller
(2.165) is shown. The throttle gain is set at 
T = 0:61, resulting in an unstable
equilibrium for the unactuated system. The initial conditions of the systems were
chosen as

(�0 ; 0; J0) = (0:6; 0:6; 0:05): (2.205)

The B-parameter is set to B = 0:5 for all the rotating stall simulations. Thus, the
compressor enter rotating stall, and J increases until Je is reached. At � = 100
the controller is switched on, and J decreases until J = 0 is reached. As discussed
at the end of Section 2.4.1, the controller gains are chosen as c3 = 0 and c2 = 1.
The simulation results are also plotted together with the compressor characteristic
and the in-stall characteristic in Figure 2.12. As the compressor is stabilized it
is seen that the pressure loss associated with the CCV is slightly less than that
associated with operating in rotating stall, which would have been the case if e.g.
the throttle control scheme of Krsti�c et al. (1995b) had been used.

The e�ect of pressure disturbances is shown in Figure 2.13. The B-parameter is
B = 0:5 and the compressor stalls. The pressure disturbance is white noise of
amplitude 0:1. Throttle setting and initial conditions were left unchanged. The
control law (2.195) with parameters c2 = 1 and d2 = 0:1 is switched on at � = 100,
bringing the compressor out of rotating stall, and damping the disturbances.
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Figure 2.11: Stabilization of rotating stall
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Figure 2.12: Same simulation as in Figure 2.11, superimposed on the compressor

characteristic and in-stall characteristic
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Figure 2.13: Stabilization of rotating stall with pressure disturbances

2.6 Conclusion

In this chapter, anti surge and stall controllers for a close-coupled valve in series
with a compressor have been developed. First, surge was studied, and by the
application of the backstepping methodology, a control law which uses feedback
from mass 
ow only was derived. Global asymptotic stability was proven. Only an
upper bound on the slope of the compressor characteristic was required to imple-
ment this controller. The controller was used both in the case of no disturbances
and in the presence of pressure disturbances.

A more complicated surge control law was derived for the case of both pressure dis-
turbances and mass 
ow disturbances. In order to implement this controller, the
compressor characteristic and the B-parameter must be known. Global uniform
boundedness and convergence to a set was proven. By assuming the disturbances
upper bounded by a monotonically decreasing non-negative function, convergence
to the origin was proven. In order to stabilize the compression system in the
presence of constant disturbances, or biases, in mass 
ow and pressure, an adap-
tive version of the surge controller was derived. This controller ensures global
asymptotic stability.

Then, controllers for rotating stall were considered. The close coupled valve was
incooperated into the Moore-Greitzer model, and controllers were derived that
enables stabilization of rotating stall beyond the surge line. Without disturbances,
an asymptotically stable equilibrium is ensured, and in the presence of pressure
disturbances uniform boundedness was proven.



Chapter 3

Passivity Based Surge

Control

3.1 Introduction

In this chapter passivity will be used to derive a surge controller for a compression
system when time varying disturbances are considered in both pressure as well as
mass 
ow.

Passivity and input/output methods have been used in many control applications
such as mechanical systems in general, electrical machines, marine vehicles and so
on. To the authors best knowledge this is the �rst attempt to apply this method
to the compressor surge control problem.

3.1.1 Motivation

In the previous chapter, backstepping was employed to derive a stabilizing control
law when time varying disturbances were taken into account. The control law
resulting from this approach was

u = c2z2 � k3
�
�3 + 3�z22

�� k2�̂
2 � k1� (3.1)

+
d1

4B2

�
��̂T (z1) + �̂

�
+ d2z2

�
1 +

d21
4B2

�
:

Of particular interest here, will be the use of input/output methods to design
controllers with disturbance rejection capabilities. This is motivated by the fact
that the surge controller (3.1) seems unnecessary complicated.
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3.1.2 Notation

A brief introduction to passivity and L2 is given here. For a comprehensive
treatment of these concepts, consult van der Schaft (1996), from which the no-
tation is taken. The signal space L2 consists, somewhat simpli�ed, of all functions
f : IIR+ ! IIR that satisfy Z 1

0

jf(�)j2d� <1: (3.2)

The truncation of f to [0; T ] is de�ned as

fT (�) =

�
f(�) ; 0 � � < T

0 ; � � T
; (3.3)

and the set L2e, the extension of L2, consists of all functions f such that fT 2 L2.
A mapping G : u 7! y with input u 2 L2e and output y 2 L2e is said to be passive
if there exists a constant � so that

Z
T

0

u(�)y(�)d� � � (3.4)

for all u 2 L2e and all T � 0. The inner product on L2e is

hu; yi
T
=

Z
T

0

u(�)y(�)d�; (3.5)

and the truncated norm is

kuk2
T
= hu; ui

T
: (3.6)

A concept that will be used in this chapter is that of strict output passivity. The
mapping G : u 7! y is strict output passive if 9 � > 0 and 9 � such that

hy; ui = hGu; ui � �kGuk2
T
+ � 8u 2 L2e; 8T � 0: (3.7)

3.2 Model

A compression system consisting of a compressor, axial or centrifugal, in series with
a close-coupled valve, a plenum volume and a throttle is studied, consult �gure 2.3.
The system is presented in section 2.2.4, and repeated here for convenience:

_̂
 =

1

4B2lc
(�̂� �̂T ( ̂)) (3.8)

_̂
� =

1

lc
(	̂c(�̂)� u�  ̂);

where u = 	̂v, and the equivalent compressor characteristic is 	̂e = 	̂c� 	̂v. The
notation _x is to be understood as di�erentiation with respect to nondimensional
time � = Ut

R
as in the previous chapter.
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Assumption 3.1 The throttle is assumed to be a passive component, moreover the

constant �2 > 0 can always be chosen su�ciently small so that the characteristic

satis�es the sector condition:

8  ̂ 9 �2 such that �̂T ( ̂) ̂ � �2 ̂
2; (3.9)

Our aim will be to design a control law u = 	̂v(�̂) for the valve such that the
compressor also can be operated stably on the left side of the original surge line
without going into surge.

3.3 Passivity

3.3.1 Passivity of Flow Dynamics

Consider the non-negative function

V1(�̂) =
lc

2
�̂2 (3.10)

The time derivative of (3.10) along solution trajectories of (3.8) is

_V1 = � ̂�̂+	e(�̂)�̂: (3.11)

Then, it is evident thatD
� ̂; �̂

E
T

=
D
�	̂e(�̂); �̂

E
T

+ V1(�)� V1(0)

�
D
�	̂e(�̂); �̂

E
T

� V1(0) (3.12)

Hence, the 
ow dynamics

G1 : � ̂ 7! �̂; (3.13)

where G1 : L2e ! L2e is an input-output mapping, can be given certain pas-
sivity properties if the equivalent compressor characteristic 	̂e(�̂) can be shaped

appropriately by selecting the valve control law 	̂v(�̂).

3.3.2 Passivity of Pressure Dynamics

Proposition 3.1 The pressure dynamics

G2 : �̂ 7!  ̂; (3.14)

where G2 : L2e ! L2e is an input-output mapping, are strictly output passive. �
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Proof : Consider the nonnegative function

V2( ̂) = 2B2lc ̂
2: (3.15)

Di�erentiating V2 along the solution trajectories of (3.8) gives

_V2 =  ̂�̂� �̂( ̂) ̂: (3.16)

In view of Assumption 3.1 and (3.16) it follows thatD
 ̂; �̂

E
T

=
D
�̂( ̂);  ̂

E
T

+

Z
T

0

_V2d�

=

Z
T

0

�̂T ( ̂) ̂d� +

Z
T

0

_V2d�

� �2

Z
T

0

 2(�)d� + V2(�) � V2(0)

� �2k ̂k2T � V2(0): (3.17)

Hence, D
G2�̂; �̂

E
T

� �2kG2�̂k2T � V2(0); (3.18)

and G2 is strictly output passive according to De�nition 2.2.1 in van der Schaft
(1996). �

Remark 3.1 In Simon and Valavani (1991), the incremental energy

V =
lc

2
 ̂2 + 2B2lc�̂

2; (3.19)

with di�erent coe�cients due to the choice of nondimensional time, was used as a

Lyapunov function candidate. The selection of the functions V1 and V2 used here

is obviously inspired by this function. �

3.3.3 Control Law

The following simple control law is proposed:

Proposition 3.2 Let the control law be given by

	̂v = c�̂ (3.20)

where c >
k
2
2

4k3
� k1 + �1 and �1 > 0 is a design parameter. Then the equivalent

compressor characteristic �	̂e(�̂) will satisfy the sector conditionD
�	̂e(�̂); �̂

E
T

�
Z
T

0

�1�̂
2(�)d� = �1k�̂k2T (3.21)

�
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Proof :
The compressor characteristic is de�ned in equation (2.24). The equivalent com-

pressor characteristic 	̂e(�̂) is then given by

	̂e(�̂) = �k3�̂3(�)� k2�̂
2(�) � (k1 + c)�̂(�) (3.22)

Consider the inner product

D
�	̂e(�̂); �̂

E
T

=

Z
T

0

�̂(�)
�
k3�̂

3(�) + k2�̂
2(�) + (k1 + c)�̂(�)

�
d�

=

Z
T

0

�̂2(�)
�
k3�̂

2(�) + k2�̂(�) + (k1 + c)
�
d�: (3.23)

It is noted that K(�̂)
4
= k3�̂

2 + k2�̂+(k1 + c) has a minimum value for �̂ = � k2

2k3
.

This minimum is calculated to be

K(�̂) = k3�̂
2 + k2�̂+ (k1 + c) � � k22

4k3
+ k1: (3.24)

With the choice

c � k22
4k3

� k1 + �1 (3.25)

it it follows from (3.22) that

k3�̂
2(�) + k2�̂(�) + (k1 + c) � �1: (3.26)

By inserting (3.26) into (3.23) we get

D
�	̂e(�̂); �̂

E
T

�
Z
T

0

�1�̂
2(�)d� = �1k�̂k2T ; (3.27)

�

Provided u = 	̂v is chosen as (3.20), it follows that also the 
ow dynamics are
made strictly output passive, that is

D
G1(� ̂);� ̂

E
T

� �1kG1(� ̂)k2T � V1(0); (3.28)

We now state a stability reslult for the closed loop system �G1;G2 , shown in �g-
ure 3.1.

Theorem 3.1 The closed loop system �G1;G2 consisting of the model (2.36) and

control law (3.1) is L2-stable. �
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h �̂

�

� ̂

 ̂

G1

G2

Figure 3.1: The closed loop system �G1;G2

Proof :
The closed loop system �G1;G2 , shown in �gure 3.1, is a feedback interconnection

of the two systems G1 : � ̂ 7! �̂ and G2 : �̂ 7!  ̂. As stated in (3.18) and (3.28),
the two mappings satisfyD

� ̂;G1(� ̂)
E

� �1kG1(� ̂)k2T � V1(0) (3.29)D
�̂;G2�̂

E
� �2kG2�̂k2T � V2(0) (3.30)

for all T � 0 and all �̂;  ̂ 2 L2e. According to the passivity theorem, Theorem
2.2.6 in van der Schaft (1996), �G1;G2 is L2-stable. �

3.4 Disturbances

h

h

�̂

�

 

G1

G2

	̂d �  ̂

�̂d�̂+ �̂d

	̂d

Figure 3.2: The closed loop system �G1;G2 with disturbances

Consider the case when the compression system is subject to disturbances �̂d(�)
in mass 
ow and 	̂d(�) in pressure rise as in Section 2.2.5. The model is repeated
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here for convenience:

_̂
 =

1

4B2lc
(�̂+ �̂d(�)� �̂T ( ̂)) (3.31)

_̂
� =

1

lc
(	̂c(�̂)� u�  ̂ � 	̂d(�))

It is assumed that 	̂d(�); �̂d(�) 2 L2e. A stability result for the closed loop system
shown in �gure 3.2 is now stated:

Theorem 3.2 The system (3.31) under control (3.20) is L2-stable if the distur-

bances �̂d(�) in mass 
ow and 	̂d(�) in pressure rise are taken into account. �

Proof :
Rede�ne G1 as G1 : �( ̂� 	̂d) 7! �̂ and G2 as G2 : �̂+�̂d 7!  ̂. The result follows

by repeating the analysis in the preceding sections and replacing � ̂ with � ̂+	̂d
when establishing the strict output passivity of G1, and replacing �̂ with �̂ + �̂d
when establishing the strict output passivity of G2. �

The structure of the closed loop system is shown in �gure 3.2. Disturbance rejec-
tion of L2-disturbances in the Moore Greitzer model is also studied by Haddad
et al. (1997), where throttle control of both surge and rotating stall is consid-
ered. While achieving global results and disturbance rejection for disturbances in
both mass 
ow and rotating stall amplitude, the controller found by Haddad et

al. (1997) is of high order, requires detailed knowledge of the compression system
parameters and also needs full state feedback.

3.5 Simulations

Now the system (3.31) with control law (3.20) is simulated. The result is given in
�gure 3.3. The controller gain was set to c = 1:1, and the controller was switched
on at � = 400. The disturbances were

�̂d(�) = 0:15e�0:015� cos(0:2�)

	̂d(�) = 0:1e�0:005� sin(0:3�); (3.32)

which has the same structure as the L2-disturbances considered in Haddad et al.

(1997).
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Figure 3.3: Comparison of closed loop response with passivity based (solid lines)

and backstepping based (dashed lines) controllers. The controllers were switched

on at � = 400.

Also plotted in Figure 3.3 is the response of the controller (3.1), simulated with
the same disturbances. The parameters for (3.1) were chosen as c2 = 1, d1 = 0:3,
d2 = 0:1. The two set of responses are almost indistinguishable, but in the lower
left plot there is a blown up plot of the CCV pressure drop, and as can be seen there
is a small di�erence. Figure 3.3 also illustrates the result of Corollary 2.2, where
the controller (3.1) guarantees convergence to the equilibrium in the presence of
disturbances upper bounded by a monotonically decreasing non-negative function.
The small di�erence in control action is due to the low damping (di) chosen for
(3.1), but with the current disturbances that is all that was needed.

One advantage of the backstepping controller (3.1) compared to the passivity based
(3.20) is that (3.1) ensures convergence to a set when the disturbances are not in
L2, whereas the approach in this chapter demands that they are in L2.

3.6 Concluding Remarks

In this chapter the passivity properties of the Greitzer model was used to derive
a surge control law for a close coupled valve. The results in this chapter, when
not taking disturbances into account, are similar to the results in section 2.3.1.
However, using input/output theory and passivity it was possible to show that

the proportional controller u = c�̂ yielded an L2-stable system in the presence of
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both mass 
ow disturbances as well as pressure disturbances. Compared to the
more complicated controller (3.1) the advantages of the input/output approach
over the Lyapunov based approach of backstepping, in this particular case, should
be evident.

However, it is believed that the simple controller u = c�̂ also could have been
derived using backstepping, but with considerable more involved algebraic manip-
ulations, and possibly a new choice of Lyapunov function candidate.

It is straightforward to show that the stability result is still valid if the control
law (3.20) is changed as long as the sector condition (3.21) hold. Thus, a more
sophisticated controller could be used in order to e.g. minimize the steady state
pressure drop over the CCV or improve transient performance, and still stability
could be shown.

When comparing with the results on rotating stall control in Haddad et al. (1997),
the passivity based method used here shows promise for developing a simple, low
order, partial state feedback controller when rotating stall is also taken into ac-
count, and still achieving disturbance rejection. This is an interesting open prob-
lem.
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Chapter 4

A Moore-Greitzer Type

Model for Axial

Compressors with

Non-constant Speed

4.1 Introduction

In this chapter we propose an extension to the Moore-Greitzer model. Non-
constant rotational speed of the compressor is taken into account. The conse-
quence of this is that the new model includes the B-parameter as a state. Higher
harmonics of rotating stall will also be included in the model.

In the original work of Moore and Greitzer, the compressor speed is assumed
constant. Greitzer and Moore (1986) concluded that low values of Greitzer's B-
parameter B lead to rotating stall, while high value of B leads to surge. High
and low in this context is dependent on the design parameters of the compressor
at hand, as Day (1994) points out. There exists a Bcritical for which higher B-
values will lead to surge and lower B-values will lead to rotating stall. However this
Bcritical is di�erent for each compressor. As B is proportional to the angular speed
of the machine, it is of major concern for stall/surge controller design to include
the spool dynamics in a stall/surge-model, in order to investigate the in
uence of
time varying speed on the stall/surge transients.

A model for centrifugal compressors with non-constant speed was presented by
Fink et al. (1992). In Gravdahl and Egeland (1997g) a similar model was derived,
and surge and speed control was investigated. However, both the models of Fink
et al. (1992) and Gravdahl and Egeland (1997g) were developed for centrifugal
machines, and do not include rotating stall as a state.
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The model of Moore and Greitzer (1986) is based on a �rst harmonics approxi-
mation of rotating stall, using a Galerkin procedure. A fundamental shortcoming
of the low order three state More Greitzer model is the one mode approxima-
tion. Mansoux et al. (1994) found that higher order modes interact with the �rst
harmonic during stall inception. Relaxation of the one mode approximation has
been presented by Adomatis and Abed (1993), Mansoux et al. (1994), Gu et al.

(1996) and Leonessa et al. (1997a), and control designs for such models have been
reported by several authors, see Table 4.1 below. Also, Banaszuk et al. (1997) re-
ports of design of stall/surge controllers without using a Galerkin approximation,
that is for the full PDE model. Leonessa et al. (1997a) highlights the importance
of including higher order modes of rotating stall in the model, and demonstrates
that the control law proposed by Krsti�c et al. (1995a), which was based on a one
mode model, fails when applied to a higher order model.

In Table 4.1, the development in stall/surge modeling and control is outlined.
Hansen et al. (1981) demonstrated that the model of Greitzer (1976a) also applies
to centrifugal compressors. It seems that the modeling and control of an axial
compression system including both rotating stall and spool speed is an open prob-
lem. The problem of non-constant speed is also listed among topics for further
research in Greitzer and Moore (1986).

Reference(s) states A/C M/C/S

Greitzer (1976a) �;	 A M

Hansen et al. (1981) �;	 C M

several, see de Jager (1995), incl. �;	 A/C C
Gravdahl and Egeland (1997c)

Fink et al. (1992) �;	; B C M

Gravdahl and Egeland (1997g) �;	; B C MCS

Moore and Greitzer (1986) �;	; J A M

Eveker and Nett (1991) �;	; B A MC

several, see de Jager (1995), incl. �;	; J A C
Gravdahl and Egeland (1997d)

Mansoux et al. (1994) �;	; Ji A M

Leonessa et al. (1997a) �;	; Ji A MC

Adomatis and Abed (1993) �;	; Ji A C
Hendrickson and Sparks (1997)
Humbert and Krener (1997)

Gravdahl and Egeland (1997a) �;	; J; B A MS

Gravdahl and Egeland (1997e) �;	; Ji; B A MS

Table 4.1: Outline of the development in compressor stall/surge modeling and

control. A=Axial, C=Centrifugal, M=Modeling, C=stall/surge control, S=Speed

control. The model of Eveker and Nett (1991) actually uses states with dimensions.
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Figure 4.1: Principal drawing of the compression system of (Moore and Greitzer

1986). The station numbers are used as subscripts in the following.

4.2 Preliminaries

The compression system is essentially the same as in Chapter 2, and consists of an
inlet duct, inlet guide vanes (IGV), axial compressor, exit duct, plenum volume
and a throttle. The di�erences compared to Chapter 2 is that the compressor speed
is non-constant, and a CCV is not included. The system is shown in Figure 4.1.
Our aim is to develop a model for this system in the form

_z = f(z); (4.1)

where z = (�; 	; Ji; B)
T 2 IIRq and

� � is the circumferentially averaged 
ow coe�cient

� 	 is the total-to-static pressure rise coe�cient

� Ji is the squared amplitude mode i of angular variation (rotating stall)

� B is Greitzer's B-parameter which is proportional to the speed of the com-
pressor.

� i = 1 : : :N is the rotating stall mode number. N is the maximum number
of stall modes determined by the gas viscosity.

� The dimension of the state space is q = N + 3:
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The modeling of the compression system relies heavily on the modeling in Moore
and Greitzer (1986). However, the assumption of constant speed U , and thus
constant B, is relaxed and a momentum balance for the spool is included. The gas
viscosity as introduced by Adomatis and Abed (1993) is also taken into account,
and N modes are included in the model as opposed to the work of Moore and
Greitzer (1986) where a �rst harmonic approximation was used.

Moore and Greitzer (1986) de�ne nondimensional time as

�MG =
Ut

R
; (4.2)

where U is the rotor tangential velocity at mean radius, R is the mean compressor
radius and t is actual time in seconds. As we here consider time varying U , this
normalization will not be used. Instead we propose to use

� =
Udt

R
; (4.3)

where Ud is the desired constant velocity of the wheel. Note that if Ud = U = const,
we have that � = �MG. All distances are nondimensionalized with respect to R,
that is the nondimensional duct lengths, see Figure 4.1, are de�ned as

lI =
LI

R
and lE =

LE

R
: (4.4)

The axial coordinate is denoted � and the circumferential coordinate is the wheel
angle �. Greitzer's B-parameter is de�ned as

B
4
=

U

2as

r
Vp

AcLc
; (4.5)

where as is the speed of sound, Vp is the plenum volume, Ac is the compressor
duct 
ow area and Lc is the total length of compressor and ducts. B and U are
related as

U = bB; (4.6)

where

b
4
= 2as

s
AcLc

Vp
(4.7)

is a constant.

4.3 Modeling

4.3.1 Spool Dynamics

The momentum balance of the spool can be written

I
d!

dt
= �t � �c; (4.8)
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where ! is the angular speed, I is the spool moment of inertia, and �t and �c are
the drive (turbine) torque and compressor torque respectively. Using ! = U=R,
(4.3) and (4.5), the spool dynamics (4.8) can be written

2asIUd
R2

s
AcLc

Vp

dB

d�
= �t � �c: (4.9)

As in Fink et al. (1992), torques are nondimensionalized according to

� = �t � �c =
�t � �c

�AcRU2
; (4.10)

where � is the constant inlet density. Now, (4.9) can be written

dB

d�
= �1B

2(�t � �c); (4.11)

where the constant �1 is de�ned as

�1
4
=
�R3Ac

IUd
b: (4.12)

As the compressor torque equals the change of angular momentum of the 
uid,
see for instance Mattingly (1996), the compressor torque can be written

�c = mcR(C�2 � C�1) (4.13)

where C�1 and C�2 are the tangential 
uid velocity at the rotor entrance and exit
respectively. Assuming that Cx, the 
ow velocity in the axial direction, is the
same at entrance and exit,

�c = mcRCx(tan�1 � tan�2) (4.14)

where �1 and �2 
uid angles at the rotor entrance and exit respectively. The 
uid
angles are time varying. However, Cohen et al. (1996) show that

tan�1b � tan�2b = tan�1 � tan�2; (4.15)

where �1b and �b2 constant blade angles at the rotor entrance and exit respectively.
The compressor mass 
ow is given by

mc = �AcU�: (4.16)

Combining (4.14), (4.15) and (4.16) gives

�c = R�Ac�
2U2(tan�1b � tan�2b) (4.17)

and by (4.10) the nondimensional compressor torque is

�c = �2(tan�1b � tan�2b): (4.18)

In terms of the compressor speed U , the dynamics of the spool can be written

dU

d�
=

�1
b
�U2: (4.19)
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4.3.2 Compressor

Moore (1984a) gives the pressure rise over a single blade row as

pE � p1
1
2
�U2

= F (�) � �
d�

dt
; (4.20)

where

� =
Cx

U
(4.21)

is the local axial 
ow coe�cient, F (�) is the pressure rise coe�cient in the blade
passage, Cx is the velocity component along the x-axis, and � is a coe�cient of
pressure rise lag. According to Moore and Greitzer (1986), d�

dt
can be calculated

as
d�

dt
=

�
@�

@t

�
rotor

+

�
@�

@t

�
stator

: (4.22)

Using (4.3) it is seen that�
@�

@t

�
rotor

=
@�

@�

@�

@t
+
@�

@�

@�

@t

=
Ud

R

@�

@�
+
@�

@�

U(t)

R
(4.23)�

@�

@t

�
stator

=
Ud

R

@�

@�
; (4.24)

where the unsteadiness of the 
ow through the stator passage re
ects the acceler-
ations associated with transients e�ects. For the rotor there is also unsteadiness
due to the rotor blades moving with velocity U(t) through a circumferentially
nonuniform 
ow. Considering a compressor of Ns stages, we get

pE � p1
1
2
�U2

= NsF (�)� 1

2a

�
2
@�

@�
+
U

Ud

@�

@�

�
; (4.25)

where

a
4
=

R

Ns�Ud
(4.26)

is a constant. Note that if U(�) = const and Ud � U such that � = �MG, equation
(4.25) is reduced to equation (5) in Moore and Greitzer (1986). It is noted that
the 
ow coe�cient � can depend on both � and �, even though the atmospheric
stagnation pressure pT is constant. The average of � around the wheel is de�ned
as

1

2�

Z 2�

0

�(�; �)d�
4
= �(�): (4.27)

Further
� = �(�) + g(�; �) and h = h(�; �); (4.28)

where h is a circumferential coe�cient. As no circulation occurs in the entrance
duct it is clear that the averages of g and h vanish:Z 2�

0

g(�; �)d� =

Z 2�

0

h(�; �)d� = 0: (4.29)
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4.3.3 Entrance Duct and Guide Vanes

The fact that the rotational speed of the wheel now is assumed time varying does
not change the conditions upstream of the compressor. Therefore the equations
stated in Moore and Greitzer (1986) are still valid, and will be presented here.
The pressure di�erence over the IGVs, where the 
ow is axial, can be written

p1 � p0

�U2
=

1

2
KGh

2; (4.30)

where 0 < KG � 1 is the entrance recovery coe�cient. If the IGVs are lossless
KG = 1. Upstream of the IGV irrotational 
ow is assumed so that a (unsteady)
velocity potential ~� exists. The gradient of ~� gives axial and circumferential ve-
locity coe�cients everywhere in the entrance duct. At the IGV entrance point
(denoted by subscript '0') we have

(~��)0 = �(�) + g(�; �) and (~��)0 = h(�; �); (4.31)

where partial di�erentiation with respect to � and � is denoted by subscripts.
Bernoulli's equation for unsteady, frictionless and incompressible 
ow will be used
to calculate the pressure drop in the entrance duct. As in Moore and Greitzer
(1986) and White (1986), this can be written

pT � p0

�U2
=

1

2
(�2 + h2) + (~��)0; (4.32)

where the term (~��)0 is due to unsteadiness in � and g. A straight inlet duct of
nondimensional length lI is considered, and the velocity potential can be written

~� = (� + lI)�(�) + ~�0(�; �); (4.33)

where ~�0 is a disturbance velocity potential such that

~�0
���
�=�lI

= 0 ; (~�0
�
)0 = g(�; �) and (~�0

�
)0 = h(�; �): (4.34)

Equation (4.32) can now be written

pT � p0

�U2
=

1

2
(�2 + h2) + lI

d�

d�
+ (~�0

�
)0: (4.35)

4.3.4 Exit Duct and Guide Vanes

Downstream of the compressor the 
ow is complicated and rotational. As in Moore
and Greitzer (1986), the pressure p in the exit duct is assumed to di�er only slightly
from the static plenum pressure ps(�), such that the pressure coe�cient P satis�es
Laplace's equation.

P
4
=
ps(�) � p

�U2
; r2P = 0: (4.36)
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The axial Euler equation, see for instance White (1986), is used to �nd the pressure
drop across the exit duct. The Euler equation is the inviscid form of the di�erential
equation of linear momentum. If integrated along a streamline of the 
ow, the
Euler equation will yield the frictionless Bernoulli equation. The Euler equation
in the x-coordinate, neglecting gravity, can be written as

� dp
dx

= �
dCx

dt
: (4.37)

Employing the chosen nondimensionalization of time and distance,

d

dt
=
Ud

R

d

d�
and

d

dx
=

1

R

d

d�
; (4.38)

we get

dpE

dx
= ��U2 1

R
(P�)E (4.39)

dCx

dt
=

Ud

R

d

d�

n
(~��)0U

o
: (4.40)

Inserting (4.39) and (4.40) in (4.37) we get the following expression for the axial
Euler equation, evaluated at E, where time varying U has been taken into account

(P�)E =
Ud

U2

d

d�

n
(~��)0U

o

=
Ud

U2

�
(~���)0U + (~��)0

dU

d�

�
: (4.41)

From (4.31) we have
(~���)0 = ��(�) + (~�0

��
)0: (4.42)

Inserting (4.31) and (4.42) into (4.41) we get

(P�)E =
Ud

U

�
d�

d�
+ (~�0

��
)0

�
+
Ud

U2

dU

d�

�
�(�) + (~�0

�
)0

�
: (4.43)

At the duct exit, � = lE , we want that p = ps, that is P = 0. Thus, when
integrating (4.43), the constant of integration is chosen such that

P =
Ud

U(�)

�
(� � lE)

d�

d�
� ~�0

�

�
+
Ud

U2

dU

d�

�
(� � lE)�(�) � ~�0

�
: (4.44)

Finally, we get

ps � pE

�U2
= (P )E =

Ud

U(�)

�
�lE d�

d�
� (m� 1)(~�0

�
)0

�

+
Ud

U2

dU

d�

�
�lE�(�)� (m� 1)(~�0)0

�
; (4.45)

where, as in Moore (1984b) and Moore and Greitzer (1986), the compressor duct

ow parameter1 m has been included. It is noted that if U(�) =const and Ud � U

such that � = �MG, equation (4.45) is reduced to equation (20) in Moore and
Greitzer (1986).

1m = 1 for a very short exit duct, and m = 2 otherwise.
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4.3.5 Overall Pressure Balance

Using the preceding calculations, we now want to calculate the net pressure rise
from the upstream reservoir total pressure pT to the plenum static pressure ps at
the discharge of the exit duct. This is done by combining equations (4.25), (4.30),
(4.35) and (4.45) according to

ps � pT

�U2
= (NF (�)� 1

2
�2)� (lI + lE

Ud

U
+
1

a
)
d�

d�

+

�
(1�m)

Ud

U
� 1

�
(~�0
�
)0 � 1

2
(1�KG)h

2

+
Ud

U2

dU

d�

�
�lE�(�)� (m� 1)(~�0)0

�

� 1

2a

�
2(~�0

��
)0 +

U

Ud
(~�0
��
)0

�
; (4.46)

where

2
@�

@�
+
@�

@�
= 2

@�

@�
+ 2

@g

@�
+
@g

@�

= 2
@�

@�
+ 2(~�0

��
)0 + (~�0

��
)0 (4.47)

has been used. By de�ning 2

	(�) =
ps � pT

�U2

	c(�) = NF (�)� 1

2
�2

lc(U) = lI + lE
Ud

U
+

1

a

mU (U) = (1�m)
Ud

U
� 1; (4.48)

and assuming KG � 1, (4.46) can be written

	(�) = 	c(�) � lc(U)
d�

d�
+mU (U)(~�

0
�
)0 (4.49)

+
Ud

U2

dU

d�

�
�lE�(�)� (m� 1)(~�0)0

�

� 1

2a

�
2(~�0

��
) +

U

Ud
(~�0
��
)� �(~�0

���
)

�
0

;

which, when assuming U = Ud and � = 0, reduces to equation (26) in Moore and
Greitzer (1986). In (4.49) the �-term is included in order to account for viscous
transportation of momentum in the compressor. Viscosity was �rst introduced

2Notice that lc 6= LcR. As in Fink et al. (1992) Lc, used in the de�nition of B, is a constant.

See equation (4.5).
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into the Moore-Greitzer model by Adomatis and Abed (1993), and included in
the analysis of Gu et al. (1996) and Hendrickson and Sparks (1997). Adomatis
and Abed (1993) concludes that the e�ect of viscous damping must be included
in a multi mode Moore-Greitzer model. This to ensure that the large velocity
gradients associated with higher modes will be damped out. Without viscosity, all
the modes would have the same amplitude in fully developed rotating stall.

Equation (4.49) requires knowledge of the disturbance velocity potential ~�0 and its
derivatives. As ~�0 satis�es Laplace's equationr2 ~�0 = 0 it has a Fourier series. This
Fourier series has N terms, where the number N is dependent on �. According to
Adomatis and Abed (1993) and Gu et al. (1996),

N =

� 1 for � = 0
�nite for � > 0

(4.50)

By using (4.6), equation (4.49) can be written in terms of B, and by integration
of (4.49) over one cycle with respect to �, we get

	(�) + lc(B)
d�

d�
+ lE

Ud��1
b

�(�) =
1

2�

Z 2�

0

 c(�)d�; (4.51)

which is the annulus averaged momentum balance.

4.3.6 Plenum Mass Balance

The mass balance in the plenum can be written

d

d�
(�pVp) = mc �mt; (4.52)

where �p is the plenum density, mc is the mass 
ow entering the plenum from the
compressor, and mt is the mass 
ow leaving through the throttle. Assuming the
pressure variations in the plenum isentropic, we have

dpp

d�
=
a2
s

Vp
(mc �mt); (4.53)

which is shown in detail in Appendix B. By nondimensionalizing pressure with
�U2, mass 
ow with �UAc, transforming to nondimensional time �, and taking
account for (4.5), (4.53) can be written

d	

d�
=

�2
B
(���T )� 2

B

dB

d�
	; (4.54)

where the constant �2 is de�ned as

�2
4
=

R

LcUd
b: (4.55)

Using (4.11) we get
d	

d�
=

�2
B
(���T )� 2�1�B	: (4.56)
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The model of the compression system now consists of the torque balance for the
spool (4.11), the local momentum balance (4.49), the annulus averaged momentum
balance (4.51) and the mass balance of the plenum (4.56).

The compression systems characteristics are taken fromMoore and Greitzer (1986).
The usual third order polynomial steady state compressor characteristic presented
in Chapter 2 is used, and repeated here for convenience:

	c(�) =  c0 +H

�
1 +

3

2
(
�

W
� 1)� 1

2
(
�

W
� 1)3

�
; (4.57)

where the parameters  c0, H and W are de�ned in Chapter 2.

The throttle characteristics is again taken to be

�T (	) = 
T
p
	: (4.58)

4.3.7 Galerkin Procedure

In order to transform the PDE (4.49) into a set of ODEs, a Galerkin approximation
is employed. The disturbance velocity potential ~�0 is represented by the function
(~�0)�:

( ~�0)� =

NX
n=1

(�)
W

n
en�An(�) sin(n� � rn(�)); (4.59)

where An(�) is the amplitude of mode number n of rotating stall and rn(�); n =
1 : : :N(�) are unknown phase angles. The residue Rn, for use in the Galerkin
approximation, is de�ned as

Rn
4
= (~�0

�
)�0 � (~�0

�
)0; (4.60)

and using (4.49) and (4.59), Rn can be calculated as

Rn =
W

n

�
dAn

d�
sin �n �An

drn

d�
cos �n

�
(4.61)

� 1

mB(B)

�
	(�) + lc(B)

d�

d�
+ lE

Ud��1
b

��	c (� +WAn(�) sin �n)

+
Ud��1(m� 1)W

bn
An(�) sin �n +

W

2a

�
2

�
dAn

d�
sin �n �An

drn

d�
cos �n

�

+
Un

Ud
An(�) cos �n + �n2An(�) sin �n

��
;

where

�n
4
= n� � rn(�): (4.62)

The Galerkin approximation is calculated using the weight functions

h1 = 1; h2 = sin �n; h3 = cos �n (4.63)
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and the inner product

hRn; hii = 1

2�

Z 2�

0

Rn(�)hi(�)d�: (4.64)

Calculating the moments

Mi = hRn; hii for i = 1; 2; 3 (4.65)

results in

M1 =
1

2�

�
	(�) + lc(B)

d�

d�
+ lE

Ud��1
b

�(�)

+

Z 2�

0

	c (� +WAn(�) sin �n) d�n

�

M2 =
1

2�

�
Ud��1(m� 1)

bn
An(�) +

�n2

2Wa
An(�)

+
dAn

d�

�
1

a
� mB(B)

n

�
(4.66)

+

Z 2�

0

	c (� +WAn(�) sin �n) sin �nd�n

�

M3 =
1

2�

�
�
�
drn

d�

�
1

a
� mB(B)

n

�
� bBn

2aUd

�
A(�)

+

Z 2�

0

	c (� +WAn(�) sin �n) cos �nd�n

�

It is recognized that, due to 	c(�) being even in �, the last term in M3 vanishes.
Demanding M3 = 0 and assuming An 6= 0 the phase angles rn must satisfy

drn

d�
=

n

2
b

Ud

1� mB(B)a

n

B =
n2b

2Ud(n�mB(B)a)
B: (4.67)

Notice that time varyingB implies that the phase angles rn are not constant, which
was the case in the constant speed, �rst harmonic model of Moore and Greitzer
(1986) and the constant speed, higher order models of Adomatis and Abed (1993)
and Gu et al. (1996).

4.3.8 Final Model

By evaluating the integrals in (4.66) using (4.57), demanding M1 = M2 = 0, and
using (4.11)and (4.56) the following model for the compression system is found:
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d�

d�
=

H

lc(B)

�
�	�  c0

H
+ 1 +

3

2
(
�

W
� 1)(1� J

2
)

�1

2
(
�

W
� 1)3 � lEUd��1

bH
�

�
(4.68)

d	

d�
=

�2
B
(���T )� 2�1�B	 (4.69)

dJn

d�
= Jn

�
1� (

�

W
� 1)2 � Jn

4
� �n2W

3aH

�2Ud��1(m� 1)W

3bHn

�
3aHn

(n�mB(B)a)W
(4.70)

dB

d�
= �1�B

2 (4.71)

where n = 1 : : :N(�), Jn is de�ned as the square of the stall amplitude An

Jn(�)
4
= A2

n
(�): (4.72)

and

J(�)
4
=

1

N(�)

NX
n=1

(�)Jn(�): (4.73)

The model (4.68)-(4.71) is in the desired form of (4.1).

In the case of pure rotating stall, dJn
d�

= 0 and � = 0, the equilibrium values of Jn
is found from (4.70) to be

Jne = 4

 
1�

�
�

W
� 1

�2
� �

n2W

3aH

!
; (4.74)

which corresponds to the result by Gu et al. (1996).

If the Galerkin approximation is carried out with only one term in the Fourier
expansion of ~�0 and assuming � = 0, as was done in Gravdahl and Egeland (1997a),
equation (4.70) is changed to

dJ1

d�
= J1

�
1� (

�

W
� 1)2 � J1

4
� 2Ud��1(m� 1)W

3bH

�
3aH

(1�mB(B)a)W
: (4.75)

The rest of the model is left unchanged, and the model is similar to that of Moore
and Greitzer except for time varying B.

It should be noted that the model developed in this chapter also can be reduced
to other well known compression system models. This is summed up in table 4.2.
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Changes made Rede�ne Gives the model of
to (4.68)-(4.71) nondim.

time acc. to

U = Ud, � = 0

J � 0, dB
d�

= 0 � := Ut

R
Greitzer (1976a)

N = 1, � = 0

� = 0
dB

d�
= 0, U = Ud � := Ut

R
Moore and Greitzer (1986)

N = 1, � = 0

J � 0 � := t!H Fink et al. (1992)
N = 1, � = 0 (Centrifugal)

N = 1, � = 0 { Gravdahl and Egeland (1997a)

U = Ud, � = 0
dB

d�
= 0 � := Ut

R
Gu et al. (1996)

m = �tanh(nlI)

U = Ud, � = 0 � := Ut

R
Adomatis and Abed (1993)

dB

d�
= 0

Table 4.2: In this table it is shown how the model derived in this chapter can be

reduced to other known models form the literature. !H is the Helmholtz frequency

de�ned as !H = as

�
Ac

LcVp

� 1
2

.

4.4 Simulations

Here some simulations of the model developed in this chapter will be presented.
For speed control, a simple P-type controller of the form

�t = cspeed(Ud � U); (4.76)

will be used. The nondimensional drive torque �t is used as the control, and
feedback from compressor speed U is assumed. In Gravdahl and Egeland (1997g)
compressor speed was controlled in a similar manner, and stability was proven
using Lyapunov's theorem. The desired speed was set to Ud = 215m/s in both the
following simulations. Numerical values for the parameters in the model are given
in Appendix D.

4.4.1 Unstable Equilibrium, 
 = 0:5

In Figure 4.2 the response of the model (4.68)-(4.71) with speed control (4.76) and
cspeed = 1 is shown. Only the �rst harmonic J1 of rotating stall is included in this
simulation. Initial values were chosen as

(�; 	; J1; B)0 = (0:55; 0:65; 0:1; 0:1); (4.77)
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such that the (�;	)-trajectory starts on the stable part of the compressor char-
acteristic as can be seen in Figure 4.3.

The throttle gain was set at 
 = 0:5 so that the equilibrium is to the left of the local
maximum of the characteristic. As can be seen from Figure 4.2, the compressor
goes into rotating stall as B (and thus compressor speed U) is low. Moreover,
when the applied torque from the speed controller cause B to increase, the stall
amplitude J falls o� and the compressor goes into surge. This is what could be
expected according to Greitzer and Moore (1986). The surge oscillations have a
period of � � 180, which correspond to a surge frequency of about 10Hz. A desired
speed of Ud = 215m=s corresponds to a desired B-parameter of Bd = Ud=b = 2:23.
After � � 1500 this value is reached. As the compressor torque �c varies with �,
see equation (4.18), we would expect oscillations in speed U as the compressor is
in surge. This is con�rmed by the lower right plot in Figure 4.2. In the upper
plot of Figure 4.3, the trajectory starts on the stable part of the characteristic,
then rotating stall occurs and the trajectory approaches the intersection of the
throttle and in-stall characteristics. As B increases the resulting surge oscillations
are clearly visible.

Now, the model is simulated using N = 3, that is three harmonics. Initial values
were chosen as

(�; 	; B; J1; J2; J3)0 = (0:55; 0:65; 0:1; 0:1; 0:05; 0:01): (4.78)

The upper plot in Figure 4.4 shows the response of the three �rst harmonics of
the squared amplitude of rotating stall J1, J2 and J3. The response is otherwise
similar to that of Figure 4.2. The lower plot is a magni�ed version of the 200
�rst time units of the upper plot, and shows that during stall inception the second
harmonic J2 dominates the �rst harmonic J1. This emphasizes the importance of
using higher order approximations of the Moore-Greitzer model. This phenomenon
was also observed by Mansoux et al. (1994) for constant speed compressors.

The previous simulations have both used a desired speed of Ud = 215m=s resulting
in a high B-parameter and driving the compressor into surge. Now, the desired
speed is changed to Ud = 75m=s which corresponds to a B-parameter of 0:78.
This is su�ciently low for the compressor studied here to become stuck in rotating
stall. The simulation is shown in Figure 4.5 using three harmonics of the squared
amplitude of rotating stall. The �rst harmonic J1 has the highest equilibrium
value. This equilibrium value decreases with mode number n due to the e�ect of
viscosity, as stated in equation (4.74).
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Figure 4.2: Simulation of the system (4.68)-(4.71). Low B leads to rotating stall,

and high B leads to surge.
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Figure 4.3: Simulations result superimposed on the compression system character-

istics. The compressor characteristic, the in-stall characteristic and the throttle

characteristic are drawn with solid, dashed and dash-dot lines respectively.
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4.4.2 Stable Equilibrium 
 = 0:65

In Figure 4.6, the impact of the spool dynamics on a stable equilibrium of the
compression system is illustrated. Only J1 is used in this simulation, and the
initial values in (4.77) were used. Similar plots can be produced including higher
harmonics. The throttle gain was set at 
 = 0:65, giving a stable equilibrium, and
the speed controller gain was again chosen as cspeed = 1. The solid trajectories
show the system response to a speed change from U = 0:05m=s to U = 215m=s. It
can be seen that the acceleration of U a�ects the other states of the model. This is
due to the couplings with speed U and torque � in the model. Of special interest
here, is the stall amplitude. The initial value of J(0) = 0:05 grows to nearly fully
developed rotating stall as the machine is accelerating, but is quickly damped out
as desired speed is reached. Simulations show that this stalling can be avoided by
accelerating the compressor at a lower rate, that is by using a smaller cspeed. This
could possibly also be achieved with other, more advanced speed controllers, and
is a topic for further research.

In contrast, the dashed trajectories in Figure 4.6 show the response without the
spool dynamics. Now, the initial value J(0) = 0:05 is damped out very quickly,
and � and 	 converges to their equilibrium values. The transient e�ects observed
are due to the initial conditions.
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Figure 4.6: Stable equilibrium with and without B-dynamics
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4.5 Concluding Remarks

In this chapter, a multi mode Moore-Greitzer axial compressor model with spool
dynamics was derived. This resulted in a model with time varying B-parameter.
Through simulations it was demonstrated that the model was capable of demon-
strating both rotating stall and surge, and that the type of instability depended
on the compressor speed. Compressor speed was controlled with a simple pro-
portional control law. In the original Moore Greitzer model only the �rst mode
of rotating stall is included. The simulations in this chapter show that during
stall inception, higher order modes can dominate the �rst mode. This is in accor-
dance with known results, and is shown here to be valid also for variable speed
compressors.

Further work on this topic includes 1) Stability analysis and stall/surge control
design for variable speed axial compressors and 2) The use of simultaneous speed
control and stall/surge control to achieve rapid acceleration without stalling the
compressor.
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Chapter 5

Modelling and Control of

Surge for a Centrifugal

Compressor with

Non-constant Speed

5.1 Introduction

In this chapter the compressor characteristic for a variable speed centrifugal com-
pressor is investigated. This characteristic is incooperated in a model similar to
that of Fink et al. (1992), and surge phenomena is studied in connection with
varying compressor speed. Energy losses in the compressor components is used to
derive the characteristic, making a departure from the usual cubic characteristic
most commonly encountered in the surge control literature. Inspired by Ferguson
(1963) and Watson and Janota (1982), 
uid friction and incidence losses, as well as
other losses, in the compressor components are modeled, and a variable speed com-
pressor characteristic is developed based on this. Both annular and vaned di�users
are studied. Surge and speed controllers for variable speed centrifugal compressors
are presented and analyzed. The speed is controlled with a PI-control law.

Axial and centrifugal compressors mostly show similar 
ow instabilities, but in
centrifugal compressors, the matching between components, such as impeller and
di�user, in
uences the stability properties. According to Emmons et al. (1955),
de Jager (1995) and others, rotating stall is believed to have little e�ect on cen-
trifugal compressor performance. The modeling and analysis in this chapter is
thus restricted to surge. Hansen et al. (1981) showed that the model of Greitzer
(1976a) is also applicable to centrifugal compressors, and this model will also be
used here.

Since compressors are variable speed machines, it is of interest to investigate the
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Figure 5.1: Compression system with CCV.

in
uence of speed transients on the surge dynamics. Models describing this in-
teraction was developed in Eveker and Nett (1991) for axial compressors and in
Fink et al. (1992) for centrifugal compressors. As surge can occur during acceler-
ation of the compressor speed, it is of major concern to develop controllers that
simultaneously can control both surge and compressor speed.

For surge control, the CCV is again employed. Semi-global exponential stability
results for the proposed controllers are given using Lyapunovs method. The results
are con�rmed through simulations.

5.2 Model

We are considering a compression system consisting of a centrifugal compressor,
close coupled valve, compressor duct, plenum volume and a throttle. The throttle
can be regarded as a simpli�ed model of a turbine. The system is showed in �gure
5.1. The model to be used for controller design is in the form

_pp =
a201
Vp

(m�mt)

_m =
A1

Lc
(p2 � pp) (5.1)

_! =
1

I
(�t � �c) ;

where m is the compressor mass 
ow, pp is the plenum pressure, p2 is the pressure
downstream of the compressor, a01 is the inlet stagnation sonic velocity, Lc is
the length of compressor and duct, A1 is the area of the impeller eye (used as
reference area), I is the spool moment of inertia, �t is the drive torque and �c
is the compressor torque. The two �rst equations of (5.1) are equivalent to the
model of Greitzer (1976a) which was also used in Chapter 2 and 3, whereas the
whole model (5.1) is similar to the model of Fink et al. (1992). In addition to
the assumptions used in the derivation of model of Greitzer (1976a), it is now
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assumed that the gas angular momentum in the compressor passages is negligible
compared to rotor angular momentum. Note that in the model used throughout
this chapter, the states are with dimension, as opposed to the previous chapters,
where nondimensional states were used.

The angular speed of the compressor ! is included as a state in addition to mass

ow and pressure rise which are the states in Greitzer's surge model. The equation
for _pp follows from the mass balance in the plenum, assuming the plenum process
isentropic, the derivation is shown in Appendix B. The equation for _m follows
from the impulse balance in the duct. In the following, the model (5.1) will be
developed in detail. In particular, expressions must be found for the terms p2
and �c. It will also be shown that an expression for the compressor characteristic
results from this derivation.

vaned di�user

eye (inducer)

rh1

r2

impellerimpeller

!

rt1

Figure 5.2: Diagrammatic sketch of a radially vaned centrifugal compressor. Shown
here with a vaned di�user.

The calculation of the compressor pressure rise will be based on energy transfer and
energy losses in the various parts of the compressor. In the following sections, the
di�erent components of the centrifugal compressor will be studied. The centrifugal
compressor consists essentially of a rotating impeller which imparts a high velocity
to the gas, and a number of �xed diverging passages in which the gas is decelerated
with a consequent rise in static pressure. A schematic drawing of a compressor is
shown in Figure 5.2. The innermost part of the impeller is known as the inducer,
or the impeller eye, where the gas is sucked into the compressor. The part of the
compressor containing the diverging passages is known as the di�user. The di�user
can be vaned, as in Figure 5.2, or vaneless. A vaneless di�user (also known as an
annular di�user) is a simple annular channel with increasing area. The choice
of di�user type depends on the application of the compressor. After leaving the
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di�user, the gas may be collected in a volute (also known as a scroll), as shown in
Figure 5.3.

�; !

Impeller and
di�user

Figure 5.3: Diagrammatic sketch of centrifugal compressor �tted with a volute.

The energy transfer to the gas takes place in the impeller. In the ideal case, this
energy is converted into a pressure rise. However, a number of losses occur in
the compressor, the main ones being friction losses and incidence losses in the
impeller and the di�user. These losses shape the compressor characteristic, and
the incidence losses are the cause of the positive slope of the characteristic, which
in turn determines the area of the compressor characteristic where surge occurs.
Therefore, these components will be studied in detail in the following. A number of
other losses, e.g. losses in the volute, are taken into account as drops in e�ciency.

5.2.1 Impeller

Incoming gas (air) enters the impeller eye (the inducer) of the compressor with
velocity C1, see Figure 5.4. The mass 
ow m and C1 is given by

C1 =
1

�01A1
m; (5.2)

where �01 is the constant stagnation inlet density. The tangential velocity U1, at
diameter D1, of the inducer is calculated as

U1 =
D1

2
! = D1�N; (5.3)

where ! is the angular velocity of the impeller and N is the number of revolutions
per second. The average diameter D1 is de�ned according to

D2
1 =

1

2
(D2

t1 +D2
h1
); (5.4)
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where Dt1 and Dh1
are the diameters at inducer tip and hub casing respectively.

The circle with diameter D1 and area A1 divides the inducer in two annuli of equal
area.
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Figure 5.4: Velocity triangle at inducer. Section through inducer at radius r1 =
D1=2.

From Figure 5.4 it is seen that the gas velocity W1 relative to the impeller is

W 2
1 = C2

1 + U2
1 � 2U1C�1: (5.5)

The gas leaves the impeller at the impeller tip with velocity C2 as shown in Fig-
ure 5.5. The diameter at the impeller tip is D2 and the tangential tip velocity is
U2.
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Figure 5.5: Velocity triangle at impeller tip.
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5.2.2 Di�user

Centrifugal compressors are usually �tted with either a vaneless (annular) or a
vaned di�user. The in
uence of the di�user upon compressor performance cannot
be over emphasized, as a considerable proportion of the 
uid energy at the im-
peller tip is kinetic energy and its e�cient transformation into static pressure is
important Ferguson (1963).

Annular Di�user

The annular di�user is a simple annular channel in which the 
uid loses velocity
and gains static pressure. One disadvantage of the annular di�user is its size, as
its outlet radius must be twice its inlet radius if the velocity is to be halved in it
Ferguson (1963). Its advantages are its price and wide range of operation.

Vaned Di�user

In a vaned di�user, vanes are used to guide the 
ow so that he overall rate of
di�usion is higher than in an annular di�user. This leads to a smaller size, but
higher production costs. The vaned di�user has a higher e�ciency but less mass

ow range than the annular di�user. This is due to stalling of the di�user vanes
for low mass 
ows.

5.3 Energy Transfer, Compressor Torque and Ef-

�ciency

5.3.1 Ideal Energy Transfer

For turbomachines, applied torque equals the change in angular momentum of the

uid:

�c = m(r2C�2 � r1C�1); (5.6)

where �c is the compressor torque, r1 = D1

2
, r2 = D2

2
and C�2 is the tangential

component of the gas velocity C2. Power delivered to the 
uid is

_Wc = !�c = !m(r2C�2 � r1C�1)

= m(U2C�2 �1 C�1) = m�h0c;ideal (5.7)

where �h0c;ideal is the speci�c enthalpy delivered to the 
uid without taking ac-
count for losses. Equation (5.7) is known as Euler's pump equation. For simplicity
the following two assumptions are made:

1. A radially vaned (no backsweep) impeller is considered with �2b = 90�, and

2. There is no pre-whirl, that is �1 = 90� ) C�1 = 0.
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The slip factor is de�ned as

�
4
=
C�2

U2
� 1� 2

i
: (5.8)

The approximation is known as Stanitz' formula where i is the number of compres-
sor blades. From (5.7), and using (5.8), we have that the ideal speci�c enthalpy
delivered to the 
uid is

�h0c;ideal =
_Wc;ideal

m
= �U2

2 : (5.9)

Notice that �h0c;ideal is independent of mass 
owm, and ideally we would have the
same energy transfer for all mass 
ows1. However, due to various losses, the energy
transfer is not constant, and we now include this in the analysis. According to
Watson and Janota (1982), Ferguson (1963), Nisenfeld (1982) and other authors,
the two major losses, expressed as speci�c enthalpies, are:

1. Incidence losses in impeller and di�user, �hii and �hid

2. Fluid friction losses in impeller and di�user, �hfi and �hfd

The incidence losses and 
uid friction losses play an important role in determining
the region of stable operation for the compressor. Other losses, such as back 
ow
losses, clearance losses and losses in the volute will be taken into account when
computing the e�ciency of the compressor. There also exist other losses such as
inlet casing losses, mixing losses and leakage losses, but these will be ignored in the
following. For a further treatment on this topic, some references are Balj�e (1952),
Johnston and Dean, Jr. (1966), Whit�eld and Wallace (1975) and Cumpsty (1989).

5.3.2 Compressor Torque

Using the assumption of no pre whirl and equation (5.6), the compressor torque is

�+
c
= mr2C�2 = mr2�U2; m > 0: (5.10)

The torque calculated in (5.10) is for forward 
ow. However, the compressor may
enter deep surge, that is reversal of 
ow, and there is need for an expression for the
compressor torque at negative mass 
ow. According to Ko� and Greitzer (1986),
an axial compressor in reversed 
ow can be viewed as a throttling device. Here
it is assumed that a centrifugal compressor in reversed 
ow can be approximated
with a turbine. This allows for the use of Euler's turbine equation:

��
c
= m(r1C�1 � r2C�2) = �mr2�U2; m < 0: (5.11)

Combination of (5.10) and (5.11) gives

�c = jmjr2�U2; 8m (5.12)

which is in accordance with the compressor torque used by Fink et al. (1992).

1If backswept impeller blades, �2b < 90�, were considered, �h0c;ideal would decrease with

increasing m.
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Disc Friction Torque

The torque set up by the rotation of the impeller in a 
uid is modeled as rotation
of a disc. When a disc is rotated in a 
uid, a resistive torque is set up given by

�df = 2

Z
r2

r1

�tan2�r
2dr; (5.13)

where r1 is the radius of the shaft, r2 is the radius of the disc and �tan is the
tangential component of the shear stress between the disc and 
uid. According to
Ferguson (1963) the torque can be approximated by

�df =
Cm�r

5
2!

2

2
=

2Cm�r
5
2

D2
1

U2
1 (5.14)

where Cm is a torque coe�cient depending on the disc Reynolds number and the
space between the disc and the casing, � is the density of the 
uid and ! is the
angular velocity of the disc. In (5.14) it has been assumed that r1 << r2.

5.3.3 Incidence Losses

The losses due to incidence onto the rotor and vaned di�user play an important
role in shaping the compressor characteristic. There exists several methods of
modeling this loss, and a comparative study is given by Whit�eld and Wallace
(1973). The two most widely used approaches are:

(1) The so called \NASA shock loss theory" reported in Watson and Janota
(1982) and Whit�eld and Wallace (1973), which is based upon the tangential
component of kinetic energy being destroyed.

(2) A constant pressure incidence model reported by Whit�eld and Wallace
(1973) where it is assumed that the 
ow just inside the blades has adapted
to the blades via a constant pressure process.

Watson and Janota (1982) concludes that for centrifugal compressors, the di�er-
ences between the two models are small. According to Whit�eld and Wallace
(1973), the main di�erence lies in the prediction of the incidence angle at which
zero loss occurs. For model (1) zero loss is predicted when the 
ow angle at the
inlet equals the blade angle. This is not the case for model (2). Based on this,
and the simplicity of (1), the NASA shock loss theory is used here. As Ferguson
(1963) points out, the term shock loss is misleading as nothing akin to shock oc-
curs in practice, but the simple notion of shock is used to explain the shape of the
compressor characteristic.

Depending on whether the mass 
ow is lower or higher than the design 
ow,
positive or negative stall is said to occur. The use of model (2) leads to a loss
varying with the square of the mass 
ow, symmetrical about the design 
ow.
Ferguson (1963) states that the incidence loss in practice increase more rapidly
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Figure 5.6: Incidence angles at inducer.

with reduction of 
ow below design 
ow, than with increase of 
ow above the
design 
ow. This leads to a steeper compressor characteristic below the design
point than above. According to Sepulchre and Kokotovi�c (1996) and Wang and
Krsti�c (1997b), such a characteristic is said to be right skew.

Impeller

The velocity of the incoming gas relative to the inducer is denoted W1. In o�-
design operation there will be a mismatch between the �xed blade angle �1b and
the direction of the gas stream �1 = �1(U1; C1), as shown in Figure 5.6. The angle
of incidence is de�ned by

�i
4
= �1b � �1: (5.15)

As the gas hits the inducer, its velocity instantaneously changes its direction to
comply with the blade inlet angle �1b. The direction is changed from �1 to �1b, and
the kinetic energy associated with the tangential component W�1 of the velocity
is lost. That is, the incidence loss can be expressed as

�hi =
W 2
�1

2
: (5.16)

From Figure 5.6 it is easily seen that

cos�1 =
U1 � C�1

W1

and sin�1 =
Ca1

W1

: (5.17)

Furthermore,

W�1 =
sin(�1b � �1)

sin�1b
W1 = (cos�1 � cot�1b sin�1)W1: (5.18)
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Inserting (5.17) in (5.18) gives

W�1 = U1 � C�1 � cot�1bCa1: (5.19)

and the incidence loss (5.16) can be written

�hi=
1

2
(U1 � C�1 � cot�1bCa1)

2
=
1

2

�
U1� cot�1bm

�01A1

�2
(5.20)

where the second equality if found using (5.2). Similar results are presented in
Chapter 5 in Ferguson (1963).

Di�user

According to Watson and Janota (1982), the losses in the vaned di�user can be
modeled with friction/incidence losses in a similar manner as in the impeller.
Similar to the inducer incidence loss, it is assumed that the velocity of the 
uid
entering the di�user is instantaneously changed to comply with the �xed di�user
inlet angle �2b. The direction is changed from �2 to �2b, and the kinetic energy
associated with the tangential component C2i of the velocity is lost, see Figure 5.7.
That is, the incidence loss can be expressed as

�hid =
C2
2i

2
: (5.21)

Using Figure 5.7 it is seen that

�hid =
1

2
(C�2 � cot�2bCa2)

2

=
1

2
(�U2 � cot�2bCa2)

2
: (5.22)
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For simplicity the choice2 Ca1 = Ca2 is made. The di�user inlet angle �2b, is now
designed such that there is minimum incidence loss in both impeller and di�user
for the same mass 
ow m. For �i = 0, we have that

U1 = Ca1 cot�1b ) Ca2 = U1 tan�1b: (5.23)

From Figure 5.7 and (5.23), it follows that

tan�2b =
Ca2

C�2
=
U1 tan�1b

�U2
(5.24)

and

�2b = atan

�
D1 tan�1b
�D2

�
; (5.25)

and consequently the di�user incidence loss (5.22) can be written

�hid =
1

2

�
�D2U1

D1

� m cot�2b
�01A1

�
: (5.26)

5.3.4 Frictional Losses

Impeller

According to Ferguson (1963) loss due to friction can be calculated as

�hfi = Ch
l

D

W 2
1b

2
; (5.27)

where Ch is the surface friction loss coe�cient3 , l is the mean channel length and
D is the mean hydraulic channel diameter. This friction loss is actually calculated
for constant area pipes of circular cross section. The friction loss coe�cient Ch is
de�ned as in Watson and Janota (1982):

Ch = 4f; (5.28)

where the friction factor f depends on the Reynolds number. Many di�erent
formulas for the friction factor have been published, see e.g. Ferguson (1963) or
White (1986). Here we will use Blasius' formula:

f = 0:3164(Re)�0:25: (5.29)

According to White (1986), (5.29) was found empirically for turbulent 
ow in
smooth pipes with Reynolds number Re below 100:000. The mean hydraulic chan-
nel diameter D is de�ned as

D =
4A

a
; (5.30)

2This is a design choice, and other choices will lead to di�erent expression for the di�user

angle �2b
3The friction loss considered here is due to friction in the impeller. According to Watson and

Janota (1982) di�usion losses in the impeller are small compared to impeller friction losses, but

they may be included in the analysis by choosing Ch to suit.
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where the cross section area A and perimeter a are mean values for the passage.
The mean hydraulic diameter D corresponds to a circle with area A and perimeter
a. Although the passages between the blades in the compressor are neither circular
nor of constant area, Balj�e (1952) reports of good agreement between theory and
measurement using (5.29).

Using Figure 5.6, it is seen that

W1b

sin�1
=

W1

sin�1b
(5.31)

and using sin�1 =
Ca1

W1
we get

W1b =
C1

sin�1b
: (5.32)

Inserting (5.2) and (5.32) in (5.27) gives

�hfi =
Chl

2D�21A
2
1 sin

2 �1b
m2 = kfim

2: (5.33)

As can be seen the friction losses are quadratic in mass 
ow and independent of
wheel speed U . Equation (5.33) represents the loss due to friction of a mass 
ow
m through a pipe of hydraulic diameter D.

Di�user

The loss due to 
uid friction in the di�user can be modeled in a similar manner
as in the impeller:

�hfd = kfdm
2: (5.34)

In the vaned di�user a pipe friction loss is calculated for each di�user passage.

5.3.5 E�ciency

The isentropic e�ciency of the compressor is de�ned as, see e.g. Cumpsty (1989)
or any other text on turbomachinery,

�i(m;U1) =
�h0c;ideal

�h0c;ideal +�hloss
: (5.35)

where the �hloss-term is the sum of the friction and incidence losses from the
previous sections. Furthermore, the e�ciency will be corrected with losses in
the volute and the additional losses arising from clearance and back-
ow. The
e�ciency is also dependent on the di�users ability to convert the kinetic energy of
the 
ow into pressure. Collection the various losses, the isentropic e�ciency from
equation (5.36) is adjusted to

�i(m;U1) =
�h0c;ideal

�h0c;ideal +�hloss
���bf ���c ���v ���d; (5.36)
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where
�hloss = �hif +�hii +�hdf +�hdi: (5.37)

The additional losses are discussed below. In Figure 5.8, the e�ciency is plotted.
In the upper plot, the compressor is equipped with a vaned di�user and in the
lower plot with an annular di�user. As can be seen, the vaned di�user o�er a
higher e�ciency, but a narrower range of 
ow compared with the annular di�user.
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Figure 5.8: E�ciencies for compressor with vaned (upper plot) and annular (lower

plot) di�user.

Clearance

Pampreen (1973) found that the clearance loss of a centrifugal compressor can be
approximated by

��c = 0:3
lcl

b
; (5.38)

where lcl is the axial clearance and b is the impeller tip width.

Back
ow

The back-
ow loss occurs because the compressor has to reprocess the 
uid that
has been reinjected into the impeller due to pressure gradients existing in the
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impeller tip region. Due to the lack of accurate modeling of this loss, Watson and
Janota (1982) suggest a loss of 3 points of e�ciency as typical:

��bf = 0:03: (5.39)

Volute

In the volute a loss will take place mainly due to the inability of the volute to use
the radial kinetic energy out of the di�user. Cumpsty (1989) assumes this loss to
lie within 2-5 point of e�ciency:

0:02 � ��v � 0:05: (5.40)

This loss is likely to be higher for compressor with a vaned di�user than with an
annular di�user, as a larger part of the total kinetic energy at the outlet of the
vaned di�user is in the radial direction. A more comprehensive treatment of loss
in volutes can be found in Lorett and Gopalakrishnan (1986).

Di�usion

The purpose of the di�user is decelerate the 
ow with high kinetic energy, and thus
convert this into pressure. This can be achieved more or less e�cient depending
on the construction of the di�user. Due to inadequate di�usion in the di�user
there will be a degradation ��d in the e�ciency �i. The e�ciency drop ��d
is dependent on the pressure recovery coe�cient, see e.g. Cumpsty (1989) or
Watson and Janota (1982), but for simplicity ��d will be considered constant
here. According to Watson and Janota (1982) vaned di�users o�er a 2 to 7 points
increase in e�ciency compared to annular di�users.

5.4 Energy Transfer and Pressure Rise

Including the losses, the total speci�c energy transfer can be calculated by sub-
tracting (5.33), (5.20), (5.26) and (5.34) from (5.9):

�h0c(U1;m) = �h0c;ideal ��hif ��hii ��hdf ��hdi: (5.41)

�h0c is a second degree polynomial in m, and as opposed to the ideal case, we see
that energy transfer to the 
uid is varying with mass 
ow m. This is shown in
Figure 5.9.

To �nd an expression for the pressure rise we now need a relation between pressure
rise and energy transfer. The pressure rise is modeled as

p2 =

�
1 +

�i(m;U1)�h0c;ideal
T01cp

� �

��1

p01 = 	c(U1;m)p01; (5.42)
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where the losses have been taken into account, and 	c(U1;m) is the compressor
characteristic. It is shown in Appendix B how to arrive at (5.42). We now have
an expression for the pressure p2 needed in the model (5.1). Notice that for each
speed N , both the pressure rise (5.42) and the e�ciency (5.36) reach maximum
for the same value of mass 
ow m. Thus, the maximum e�ciency is reached on
the surge line, stressing the need for active control in order to be able to operate
safely in the neighborhood of the surge line. The inlet stagnation temperature T01,
speci�c heat capacity cp and � are assumed constant. The ideal energy transfer
and the losses are shown for a compressor with annular di�user in �gure 5.9. In
the case of vaned di�user, the curves look similar, but with a steeper slope due
to the incidence losses at the di�user. The curves are calculated for a compressor
speed of N = 35; 000rpm.
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Figure 5.9: Energy transfer for N = 35; 000 rpm. Compressor with annular dif-

fuser.

The compressor pressure characteristic as calculated from equation (5.42) is showed
in Figure 5.10.

In �gures 5.9 and 5.10 the numerical values for the compressor parameters is
taken from Fink et al. (1992). Comparing the compressor map in Figure 5.10 with
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Figure 5.10: Centrifugal compressor characteristic. The left plot is for an annular

di�user, and the right for a vaned di�user. The dashed lines to the right are choke

lines, also known as stone walls.

Figure 3 in Fink et al. (1992), which is based on physical measurements, we see
that they are almost similar.

The surge line is the line in the compressor map that divides the map into an area
of stable compressor operation and unstable (surge) operation. The line passes
through the local maxima of the constant speed lines in the map, and is drawn
with a solid line in �gure 5.12.

5.5 Choking

When the 
ow reaches sonic velocity at some cross-section of the compression
system, the 
ow chokes. Assuming isentropic 
ow, Dixon (1978) calculated the
choking 
ow for the components most likely to choke in centrifugal compressors,
the impeller eye (the inducer) and at the entry of the di�user.

The e�ect of choking can be seen in Figure 5.10, where a choke line, also known
as a stone wall, has been drawn. In this paper, the e�ect of choking is treated in
a approximate manner. Due to sonic e�ects, the pressure rise would fall o� more
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gradually when approaching the stone wall than shown in Figure 5.10. Dixon
(1978) showed that the mass 
ows for which choking occurs are:

� Choking in impeller

mchoke(U1) = A1�01a01

2
642 + (�� 1)

�
U1

a01

�2
�+ 1

3
75

(�+1)

2(��1)

; (5.43)

where
�01 =

p01

RT01
and a01 =

p
�RT01 (5.44)

is the inlet stagnation density and inlet stagnation sonic velocity, respec-
tively. It is seen than the choking mass 
ow is dependent on blade speed
U1. Thus the impeller can accept a greater limiting mass 
ow rate at higher
rotational speeds. By inserting U1 = 0 in (5.43) the expression for choked

ow through a nozzle is found. This is shown in Appendix B.

� Choking in the di�user entry

mchoke(U2) = A4�01a01

1 + (�� 1)�imp�
�
U2

a01

�2
r
1 + (�� 1)�

�
U2

a01

�2
�

2

�+ 1

� (�+1)

2(��1)

; (5.45)

where A4 is the 
ow area of the di�user entry, and �imp is the impeller
e�ciency.

5.6 Dynamic Model

To complete the dynamic model (5.1), an expression for the throttle mass 
ow is
needed. The mass 
ow mt through the throttle is modeled as

mt = kt
p
pp � p01; (5.46)

where kt is the throttle gain proportional to throttle opening and pp is the plenum
pressure. The momentum balance of the spool is

I _! = �t � �c: (5.47)

Using (5.3) it is seen that

! =
2U1
D1

) _! =
2 _U1
D1

; (5.48)

and thus we get a di�erential equation for U1,

_U1 =
D1

2I
(�t � �c) : (5.49)
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The drive torque �t may be delivered by a turbine, and will be used as a control
variable for speed control. The compressor and spool can only rotate in one
direction, and the speed is assumed upper bounded:

0 � U1(t) < Um: (5.50)

Using (5.12) and (5.49), and inserting equations (5.42) and (5.46) in (5.1), we get
the following dynamic model for the compression system

_pp =
a201
Vp

(m� kt
p
pp � p01)

_m =
A

L

 �
1 +

�i(m;U1)�h0c;ideal
T01cp

� �

��1

p01 � pp

!
(5.51)

_U1 =
D1

2I
(�t � �c) :

It is worth noticing that a time varying U is equivalent with a time varying B-
parameter Fink et al. (1992). Greitzer's B-parameter as de�ned in Greitzer (1976a)

is given by B = U1

2a01

q
Vp

A1Lc
; where Vp is the plenum volume and Lc is the length

of the compressor and duct. Using (5.49), a nonlinear di�erential equation for B
can be found.

5.7 Surge Control Idea

The reason for equilibria to the left of the surge line being unstable, and causing
the compressor to go into surge, is the positive slope of the characteristic in this
area. From Figure 5.9 it is seen that the positive slope is due to the incidence losses
at low mass 
ows. From the expression for the incidence loss, equation (5.20), it
is clear that a variable blade angle �1b would make it possible to minimize the
incidence losses over a range of mass 
ows. Thus variable inducer blades might be
used as a means of surge stabilization.

On the other hand, the maximum energy transfer and minimum incidence loss do
not occur for the same mass 
ow. This is due to the friction losses. The friction
shifts the point of maximum energy transfer, and consequently pressure rise, to
the left of the point of minimum incidence loss. From this, we conclude that the
friction losses in fact have a stabilizing e�ect, and introducing additional 
uid
friction would move the point of maximum energy transfer to the left. The result
of this is that the surge line will be shifted to the left, and the area of stable
compressor operation is expanded.

This motivates us to introduce a valve in series with compressor. The valve will
introduce a pressure drop into the system, and the characteristic of the valve will
have the same qualitative impact on the equivalent compressor characteristic as
introducing more 
uid friction. The pressure drop over this valve will serve as
the control variable, and it will be used to introduce additional friction at low
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mass 
ows in order to avoid surge. The use of a close coupled valve for constant
speed centrifugal compressor surge control was studied by Dussourd et al. (1977),
Jungowski et al. (1996) and Pinsley et al. (1991).

5.8 Controller Design and Stability Analysis

The equivalent compressor characteristic for compressor and close coupled valve
is de�ned as

	e(m;U1) = 	c(m;U1)�	v(m); (5.52)

where 	v(m)p01 is the pressure drop across the CCV and

	c(m;U1) =

�
1 +

�i(m;U1)�h0c;ideal
T01cp

� �

��1

: (5.53)

Assume p0, m0 to be the equilibrium values of pressure and mass 
ow as dictated
by the intersection of the throttle and compressor characteristics, and Ud to be
the desired spool speed. De�ne the following error variables

p̂ = pp � p0; m̂ = m�m0; Û = U1 � Ud: (5.54)

The equations of motion (5.51) are now transformed so that the origin becomes the
equilibrium under study. Notice that no assumptions are made about the numeric
values of m0 and p0, so that the equilibrium can be on either side of the surge
line. The equilibrium values is calculated using the same method as described in
section 2.3.2. De�ne

m̂t(p̂) = mt(p̂+ p0)�m0 (5.55)

	̂c(m̂; Û) = 	c(m̂+m0; Û + Ud)� p0 (5.56)

	̂v(m̂; Û) = 	v(m̂+m0; Û + Ud)� p0 (5.57)

By including the CCV (5.52), and using (5.55)-(5.57), the model (5.51) can be
written in the form

_̂p =
a2

Vp
(m̂� m̂t(p̂))

_̂m =
A

L

��
	̂c(m̂; Û)� 	̂v(m̂)

�
p01 � p̂

�
(5.58)

_̂
U1 =

D1

2I
(�̂t � �̂c)

where a hat denotes transformation to the new coordinates (5.54), and (p̂ m̂ Û)T =
(0 0 0)T is the equilibrium. The expressions for the characteristics m̂t(p̂), 	̂c(m̂; Û)
and 	̂v(m̂) are found in a similar manner as in Chapter 2. From (5.12) it is known
that

�c =
D2
2�

2D1

jmjU1 = D2
2�

2D1

sgn(m)mU1: (5.59)
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As in Nicklasson (1996), a scaled hyperbolic tangent function will be used to
mimic the signum function in the analysis in order to avoid additional di�culties
regarding continuity:

�c =
D2
2�

2D1

tanh(
m

&
)mU1; (5.60)

where & > 0 is a su�ciently large constant. The torque �̂c is de�ned as

�̂c = �c � �co (5.61)

and calculated as

�c =
D2
2�

2D1

tanh(
m

&
)(m̂+m0)(Û + Ud)

=
D2
2�

2D1

tanh(
m

&
)(m̂+m0)(m̂Û + m̂Ud +m0Û)| {z }

�̂c

+
D2
2�

2D1
tanh(

m

&
)m0Ud| {z }

�c0

: (5.62)

By choosing
�̂t = �t � �co; (5.63)

the last equation in (5.58) follows from the last equation in (5.51).

Theorem 5.1 The surge control law

	̂v = kvm̂; (5.64)

and the speed control law

�̂t = �kpÛ � kiÎ ;

_̂
I = Û ; (5.65)

where

kp > 0 ; ki > 0 and kv > sup
Û ;m̂

(
@	̂c(m̂; Û)

@m̂

)
+ �1; (5.66)

and �1 > 0, makes the origin of (5.58) semi-global exponentially stable. That is,

desired compressor speed Ud is achieved whether the equilibrium is to the right or

to the left of the original surge line. The integral term in (5.65) is added in order

to robustify the controller with respect to unmodeled disturbance torques. �

Proof:
De�ne

z
4
=

�
Û

Î

�
and P

4
=

�
2I
D1

�

� ki

�
; (5.67)
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where � > 0 and ki > 0 are design parameters. Consider the following Lyapunov
function candidate

V (p̂; m̂; Û ; Î) =
1

2
(Vp̂ + Vm̂ + Vspool) ; (5.68)

where

Vp̂ =
Vp

a201�01
p̂2 ; Vm̂ =

L

A1�01
m̂2 and Vspool = zTPz: (5.69)

As all coe�cients in (5.68) are constant it follows that V is positive de�nite and
radially unbounded, provided that � is chosen such that P > 0, that is

� <

r
2Iki
D1

: (5.70)

Calculating the time derivative of (5.68) along the solutions of (5.58) and account-
ing for (5.65) gives

_V = m̂
�
	̂c(m̂; Û)� 	̂v(m̂)

� p01
�01

� 1

�01
p̂m̂t(p̂)� kpÛ

2

+�Û2 � �kiD1

2I
Î2 � �kpD1

2I
Û Î � Û �̂c � �D1

2I
Î �̂c: (5.71)

The last term in (5.71) can be upper bounded as

��D1

2I
Î �̂c = ��D

2
2�

4I

�
tanh(

m

&
)m̂U +m0Û

�
Î

� �D2
2�

4I

�
Um

2

�
m̂2

�1
+ �1Î

2

�
+m0Û Î

�
(5.72)

using (5.12), (5.50) and Young's inequality. The parameter �1 > 0 can be chosen
freely. The Û �̂c-term can be upper bounded as

�Û �̂c = �D
2
2�

2D1

tanh(
m

&
)
�
(m̂+m0)Û + m̂Ud

�
Û

� �D
2
2�

2D1

tanh(
m

&
)mÛ2 +

D2
2�

4D1

�
m̂2

�2
+ �2(UdÛ)

2

�
: (5.73)

Now, (5.71) can be upper bounded as

_V � m̂
�
	̂c(m̂; Û)� 	̂v(m̂)

� p01
�01

� D2
2�

2D1

tanh(
m

&
)mÛ2

+

�
��D2

2Um

8I�1
+

D2
2�

4D1�2

�
m̂2 � 1

�01
p̂m̂t(p̂)� zTRz; (5.74)

where

R =

0
@ kp � �� D

2
2�U

2
d
�2

4D1

�

4I

�
D1kp � �D

2
2m0

2

�
�

4I

�
D1kp � �D

2
2m0

2

�
�

2I

�
kiD1 � �D

2
2Um�1

4

�
1
A : (5.75)
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Demanding R > 0 gives the following conditions on kp, �1 and �

kp >
D2
2�U

2
d
�2

4D1

; (5.76)

�1 <
4kiD1

�D2Um
(5.77)

and

� < min f�1; �2g ; (5.78)

where

�1 = kp � D2
2�U

2
d
�2

4D1

(5.79)

and

�2 =

�
kp � D

2
2�U

2
d
�2

4D1

��
kiD1 � �D2Um�1

4

�
kiD1 � �D2Um�1

4
+ 1

8I

�
D1kp � �D2m0

2

�2 : (5.80)

It is assumed that m̂t satis�es the sector condition

p̂m̂t(p̂) > �2p̂
2; (5.81)

that is, the throttle is assumed passive as in Simon and Valavani (1991). As p̂m̂t(p̂)
is of order 3

2
in p̂, (5.81) does not hold globally. However, for a given p̂max such

that

jp̂(t)j � p̂max 8 t > 0 (5.82)

it will always be possible to chose �2 small enough for (5.81) to hold for jp̂(t)j �
p̂max. This is the same assumption as made in Assumption 3.1. Now, the CCV
pressure drop 	v(m̂) is to be chosen such that for the �rst term in (5.74), the
condition

�m̂
�
	̂c(m̂; Û)� 	̂v(m̂)

� p01
�01

> 0 8Û (5.83)

is satis�ed. Since p01

�01
> 0, su�cient conditions for (5.83) to hold is

�
�
	̂c(m̂; Û)� 	̂v(m̂)

����
m̂=0

= 0 (5.84)

and
@

@m̂

�
�	̂c(m̂; Û) + 	̂v(m̂)

�
> 0: (5.85)

It can be recognized that

	̂c(0; Û) = 	c(m0; Ud)�	c(m0; Ud) = 0; (5.86)

	̂v(m̂) = kvm̂ ) 	̂v(0) = 0; (5.87)

and thus (5.84) is satis�ed. From (5.85), we get

� @

@m̂
	̂c(m̂; Û) + kv > 0; (5.88)
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and it follows that choosing kv according to

kv > sup
Û;m̂

(
@	̂c(m̂; Û)

@m̂

)
; (5.89)

guarantees that (5.85), and thereby (5.83) being satis�ed. Moreover, if kv is chosen
as

kv > sup
Û;m̂

(
@	̂c(m̂; Û)

@m̂

)
+ �1; (5.90)

where �1 > 0, we get m̂	v(m̂) > �1m̂
2, and (5.83) is modi�ed to

�m̂
�
	̂c(m̂; Û)� 	̂v(m̂)

� p01
�01

>
p01

�01
�1m̂

2 8Û : (5.91)

Consequently, _V can now be upper bounded as

_V � �
�
p01

�01
�1 � ��D2

2Um

8I�1
� D2

2�

4D1�2

�
m̂2 � �2p̂

2 � 1

2
zTRz 8 m̂; p̂; z (5.92)

We now set out to compare the coe�cients of V and _V . The cross terms in Û and
Î are upper bounded using Young's inequality,

�Û Î � �

2

 
Û2

�3
+ �3Î

2

!
(5.93)

��(4D1kp � �D2
2m0)

2I
Û Î � �(4D1kp � �D2

2m0)

4I
��

Û2=�4 + �4Î
2
�
; (5.94)

where �3 > 0 and �4 > 0 are constants that can be chosen freely. Using (5.93) and
(5.94) and comparing the coe�cients in (5.68) and (5.92), it can be recognized
that if the following inequalities are satis�ed for some constant $ > 0:

�1 � ��D2
2Um�01

8I�1p01
� D2

2��01

4D1�2p01
> $

L

A�01
(5.95)

�2 > $
Vp

a201�01
; (5.96)

kp � �� �(4D1kp � �D2
2m0)

4I�4
> $

�
I

D1

+
�

2�3

�
; (5.97)

�ki � �(4D1kp � �D2
2m0)

4I
�4 > $

�
ki

D1

+
$�3

2

�
; (5.98)

the following holds
_V � �$V ) V (t) � V (0)e�$t: (5.99)

If �1 is chosen according to (5.77), and �1 is chosen according to

�1 >
��D2

2Um�01

8I�1p01
+

D2
2��01

4D1�2p01
; (5.100)
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and kv is chosen so that kv > sup
Û;m̂

n
@	̂c(m̂;Û)

@m̂

o
+ �1, and � is chosen accord-

ing to (5.70) and (5.78), then the inequalities (5.95)-(5.98) are satis�ed for some
$ > 0. By (5.99) the origin of (5.58) is exponentially stable. Due to assumption
(5.82), the stability result holds whenever jp̂(0)j � p̂max, and thus the origin is
semi globally exponentially stable. �

Notice that the parameter $ can be used to calculate a lower bound on the con-
vergence rate of the system.

Providing the parameters ki and � with appropriate units, V is a energy-like
function of unit [J ]. The term

V
Û
=

1

2
z1P11z1 =

I

2D2
1

Û2 (5.101)

is recognized as the kinetic energy, expressed in the new coordinates, of the rotating
spool.

5.9 Simulations

In order to model the compressor pressure rise for negative mass 
ow (deep surge)
it is assumed that the pressure rise is proportional to the square of the mass 
ow
for m < 0, that is,

	c(U1;m) =

(
cnm

2 +  c0(U1) ; m � 0;�
1 +

�i(m;U1)�h0c;ideal
T01cp

� �

��1

; m > 0
; (5.102)

where the choice

 c0(U1) =

�
1 +

�i(m;U1)�h0c;ideal
T01cp

� �

��1

�����
m=0

; (5.103)

of the shut o� value  c0 ensures that 	c(U1;m) is continuous in m. According to
Willems (1996) and Day (1994), the back-
ow characteristic de�nes the resistance
which the rotating blades o�er to 
ow in reversed direction. Day (1994) states
that, in reversed 
ow the compressor can be regarded as a throttling device with
a positive pressure bias.

A quadratic characteristic for reversed 
ow is also proposed by Hansen et al.

(1981) for centrifugal compressors, and by Mansoux et al. (1994), Willems (1996)
and Day (1994) for axial compressors. It is widely accepted in the literature (see
e.g. Greitzer (1981)) that the compressor characteristic has a negative slope for
negative mass 
ow. This slope depends on the choice of the constant cn.

The two cases of annular and vaned di�user are now simulated with and without
surge control.
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Annular Di�user

In Figure 5.11 the response (solid lines) of the compression system during surge is
showed. The set point for compressor speed was Ud = 150m=s) N � 50:000rpm
and the speed control law (5.65) parameters were set to kp = 0:1 and ki = 0:07.
The throttle gain was set to kt = 0:0003 which gives an unstable equilibrium to
the left of the surge line. Notice the oscillation in speed U1. These variations in
spool speed during surge was �rst described by Eveker and Nett (1991) for an
axial compressor. This simulation is also shown in Figure 5.12, where the pressure
rise has been plotted versus the mass 
ow in the compressor characteristic. As
can be seen, the compressor undergoes severe (deep) surge oscillations, and the
compressor speed oscillates around the desired value.

Now, the surge controller (5.64) is used with kv = 0:5. The speed set point, speed
controller parameters and throttle gain are as before. The results are shown in
Figure 5.11 (dashed lines). The desired speed is reached and the surge oscillations
are eliminated. As previously mentioned there is a loss associated with the CCV
control approach. The pressure drop over the valve is shown in the lower right
corner of Figure 5.11. At equilibrium the pressure drop for this particular case is at
ca. 5kPa. Compared to the pressure rise over the compressor at this equilibrium,
well over 200kPa this seems little when taken into account that the compressor now
is operating in an area of the compressor map previously not possible. The CCV
loss is dependent on the controller gain kv. In this simulation the gain was set to
kv = 0:5 to dominate the maximum positive slope of the compressor characteristic.
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Figure 5.11: Transient response of centrifugal compression system with annular

di�user. Without surge control, the compressor goes into surge, shown with solid

lines. The system response with the surge controller is shown with dashed lines.
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Figure 5.12: (m(t); p(t)=p01)-trajectories plotted together with the compressor char-
acteristic. N is the compressor speed in rpm. In the case of no surge control, the

surge cycle is clearly visible, but with surge control the state converges to the in-

tersection of the throttle and the compressor characteristic.

Vaned Di�user

The response of the compression system with speed control only is shown in Fig-
ure 5.13 (solid lines). The speed control parameters were set to kp = 0:1 and
ki = 0:07, and the throttle gain was set at kT = 0:00075. As the vaned di�user
gives a steeper and more narrow characteristic, the amplitude of the pressure os-
cillations is larger than for the annular di�user. This is also the case for the speed
and mass 
ow oscillations.

When the surge control is in use, we get the response plotted with dashed lines in
Figure 5.13, and as can be seen the oscillations are avoided at the cost of a pressure
loss over the CCV. Since the positive slope of the compressor characteristic is larger
in this case compared to the annular di�user, this pressure drop is also larger.
However, a pressure drop of 35kPa over the valve is still less than the pressure rise
of 180kPa over the compressor.

By comparing the in-surge response of the two cases, it is seen that the frequency
of the surge oscillations is lower for the vaned di�user (3Hz), than for the annular
di�user (7Hz). This is in accordance with Greitzer (1981) and Willems (1996)
where it is shown that the surge frequency depends on the slope of the compressor
characteristic in such a way that a steeper slope leads to lower frequency, and a
less steep slope leads to higher frequency.
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Figure 5.13: Transient response of centrifugal compression system with vaned dif-

fuser. Without surge control, the compressor goes into surge. This is plotted with a

solid line. The dashed lines is the system response when the CCV surge controller

is in use.

5.10 Conclusion

In this chapter, a dynamic model of a centrifugal compression system with non-
constant compressor speed was presented. The compressor characteristic was
derived by calculating the energy transfer end losses in the components of the
compressor. Incidence and friction losses in the impeller and the di�user were
considered in addition to other losses. Both vaned and annular di�users were
considered.

Control laws for surge and speed of the centrifugal compression system were de-
veloped. A close coupled valve was chosen as an actuator for the control of surge.
Using Lyapunov's method, the systems equilibrium was showed to be semi-global
exponentially stable. Through simulations it was con�rmed that the compressor
can operate stable

and reach desired speed in the previous unstable area to the right of the surge line
in the compressor map.

From a surge control point of view, the main di�erence between the annular and
vaned di�users are the steeper slope of the compressor characteristic when a vaned
di�user is used. A consequence of this is that if a close coupled valve is used to
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control surge, a greater pressure drop must be accepted over the valve in the case
of a vaned di�user than in the case of an annular di�user.



Chapter 6

Conclusions

In this thesis modeling and control of surge and rotating stall in axial and cen-
trifugal compressors have been studied.

First, surge and stall controllers for a close coupled valve in series with a compressor
were developed. Using backstepping, a surge control law for the close coupled valve
was derived. Global asymptotic stability was proven. A more complicated surge
control law was derived for the case of both pressure disturbances and mass 
ow
disturbances. Global uniform boundedness and convergence was proven. In order
to stabilize the compression system in the presence of constant disturbances, or
biases, in mass 
ow and pressure, an adaptive version of the surge controller was
derived. This controller ensures global asymptotic stability. Then, controllers
for rotating stall were considered. The close coupled valve was incooperated into
the Moore-Greitzer model, and controllers were derived that enables stabilization
of rotating stall beyond the surge line. Without disturbances, an asymptotically
stable equilibrium is ensured, and in the presence of pressure disturbances uniform
boundedness was proven.

Then, the passivity properties of the Greitzer model was used to derive a surge
control law for a close coupled valve. This resulted in a simple proportional control
law, that was capable of stabilizing the compression system in the presence of both
mass 
ow disturbances as well as pressure disturbances.

A multi mode Moore-Greitzer axial compressor model with spool dynamics was
derived. This resulted in a model with time varying B-parameter. Through sim-
ulations it was demonstrated that the model was capable of demonstrating both
rotating stall and surge, and that the type of instability depended on the compres-
sor speed. In the original Moore Greitzer model only the �rst mode of rotating
stall is included. The simulations in this chapter show that during stall inception,
higher order modes can dominate the �rst mode. This is in accordance with known
results, and is shown here to be valid also for variable speed compressors.

A dynamic model of a centrifugal compression system with non-constant compres-
sor speed was presented. The compressor characteristic was derived by calculating
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the energy transfer and losses in the components of the compressor. Incidence and
friction losses in the impeller and the di�user were considered in addition to other
losses. Both vaned and annular di�users were considered. Control laws for surge
and speed of the centrifugal compression system were developed. A close cou-
pled valve was chosen as an actuator for the control of surge. Using Lyapunov's
method, the systems equilibrium was showed to be semi-global exponentially sta-
ble. Through simulations it was con�rmed that the compressor can operate stable
and reach desired speed in the previous unstable area to the right of the surge line
in the compressor map.
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Appendix A

Nomenclature

A.1 Acronyms

CCV Close Coupled Valve
CLF Control Lyapunov Function
IGV Inlet Guide vanes
ODE Ordinary Di�erential Equation
PDE Partial Di�erential Equation
PDF Positive De�nite Function
GAS Globally Asymptotically Stable
GES Globally Exponentially Stable
MG Moore-Greitzer

A.2 Subscripts

0 Equilibrium value
c Compressor
d Disturbance or desired value
x; a Axial
p Plenum
�; �; � Partial derivative with respect to �, � or �

A.3 Superscripts

0 �̂0 is a disturbance velocity potential

� (�̂0)� is an approximation of �̂0
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A.4 Mathematical Symbols and De�nitions

_(�) Total time derivative, d

dt
or d

d�

@

@x
Partial derivative with respect to variable x

(�)�1 Inverse operator

(̂�) Deviation from equilibrium, transformed coordinates
k � k1 The L1-norm of the function

f : IIR+ ! IIR is de�ned as kfk1 = sup
t�0 jf(t)j

j � j Magnitude of vector
(�)T Transpose operator
8 For all
9 Exists
IIR Real numbers

IIR+ Nonnegative real numbers fx 2 IIR : x � 0g
IIRn Linear space of n-tuples in IIR

r Divergence operator. r � f(x1; x2; : : :) = @f1

@x1
+ @f2

@x2
+ : : :

K Class of functions. A function f : [0; a)! IIR+ is said to
belong to class K if it is strictly increasing and f(0) = 0.

K1 Class of functions. A function f : [0; a)! IIR+ is said
to belong to class K1 if it belongs to class K,
a =1 and f(r)!1 as r !1.

� The function f � g is the composition of
the functions f and g

7! Mapping
L2 Space of square integrable functions. f : IIR+ ! IIR

belongs to L2 i�
R1
0
jf(t)j2dt <1

fT (t) The truncation of f to [0; T ].

fT (t) =

�
f(t) ; 0 � t < T

0 ; t � T

L2e The extension of L2. f 2 L2e i� fT 2 L2
G Input-output mapping

hu; yi
T

Inner product on L2e. hu; yiT =
R
T

0
u(t)y(t)dt

kuk2
T

Truncated norm. kuk2
T
= hu; ui

T

sgn(�) Signum function
tanh(�) Hyperbolic tangent
sup(�) Supremum, lower upper bound
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A.5 Symbols

The equation numbers are references to where the symbol was de�ned or �rst used.

Latin Uppercase

Ac Flow area (2.3)
Acl Closed loop Jacobian (2.193)
A1 Reference 
ow area. Area of impeller eye. (5.1)
An Amplitude of mode number n of rotating stall (4.48)

Az(z;d) Nonlinear part of error dynamics (2.140)
A Area of attraction (2.154)
B Greitzer B-parameter (2.3)
C�1; C�2 Tangential 
uid velocity at the rotor entrance

and exit (4.13)
Cx; Ca1; Ca2 Axial 
uid velocity (4.21)
C1 Fluid velocity at inducer (5.2)
C2 Fluid velocity at di�user entry, Figure 5.5
Ch Surface friction loss coe�cient (5.27)

C2; C3; C4 Functions used to calculate upper bound on c3
in the proof of Theorem 2.5

C1; C3; C4 Functions used to calculate lower bound on c3
in the proof of Theorem 2.5

D Hydraulic diameter (5.27)
D1; r1 Average inducer diameter and radius (5.4)
D2; r2 Diameter and radius at impeller tip, Figure 5.5
Dt1 Diameter at inducer tip (5.4)
Dh1 Diameter at impeller hub casing (5.4)
F (�) Pressure rise coe�cient in blade passage (4.20)
G1(�); G2(�) Functions used in the proof of Theorem 2.5
G1;G2 Input-output mappings (3.13), (3.14)
H Compressor characteristic semi height (2.4)
I Spool and rotor moment of inertia (4.8)

Î Integral of Û (5.65)
J Squared amplitude of rotating stall (2.1)
Ji Mode i of squared amplitude of rotating stall (4.72)
Jne Equilibrium value of Jn (4.74)
Jmax Maximum value of squared rotating

stall amplitude (2.150)
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Latin Uppercase

K(�̂) Function, used in passivity analysis (3.24)
KG Entrance recovery coe�cient (4.30)
Lc Length of ducts and compressor (2.3)
LI Length of inlet duct (4.4)
LE Length of exit duct (4.4)
M1;M2;M3 Moments calculated in Galerkin approximation (4.66)
Ns Number of compressor stages (2.12)
N Number of revolutions per second (5.3)
N(�) Number of rotating stall modes (4.50)
P Positive de�nite constant matrix (5.67)
P z Constant skew symmetric matrix (2.140)
P (�) Matrix used in proof of Theorem 2.5
Q Supplied heat
Rn Residue nr. n used in Galerkin approximation (4.61)
R Mean compressor radius (2.5)
R Positive de�nite constant matrix (5.75)
Re Reynolds number (5.29)
R�;R1;R2;R3 Residual sets (2.72), (2.87), (2.116), (2.202)
S(z) Storage function (2.36)
T01 Inlet stagnation temperature
U(z1; z2; J) PDF (2.185)
U Tangential speed of rotor
U1 Tangential speed of rotor, at diameter D1 (5.3)
U2 Tangential impeller tip speed, Figure 5.5
Ud Desired tangential speed of rotor (4.3)
Um Upper bound on U1 (5.50)
Vp Plenum volume (2.3)
V1; V2 LFCs�
_V2

�
i

Term number i in _V2 (2.166)

W Compressor characteristic semi width (2.4)
W (z1; z2) PDF
W1 Fluid velocity relative to moving impeller blades (5.5)
W1b Component of W1 in blade direction (5.32)
W�1 Tangential component of W1 (5.18)
_Wc Compressor power (5.7)
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Latin lowercase

a Reciprocal time lag of the compressor passage (2.2)
a Compressor characteristic slope (2.53)
as Sonic velocity
am Max positive slope of compressor characteristic (2.53)
b Constant. U = bB (4.7)
c2; c3 Surge/stall controller gains
c Constant. Used in convergence proof (2.90)
cspeed Speed controller gain (4.76)
cn Slope of back
ow characteristic (5.102)
cmin3 ; cmax3 Lower and upper bound on c3 (2.189), (2.190)
cp Speci�c heat capacity at constant pressure
cv Speci�c heat capacity at constant volume
d�; d Mass 
ow and pressure biases (2.37)
d1; d2 Surge/stall controller damping coe�cients

d ; d� Estimates of biases, Theorem 2.4
~d ; ~d� Estimation errors (2.126), (2.134)
~d ( ~d ~d�)

T

f Friction factor (5.29)
g(�; �) Disturbance of axial 
ow coe�cient (4.28)
h(�; �) Circumferential velocity coe�cient (4.28)
h1; h2; h3 Weight functions used in Galerkin approximation (4.63)
h Speci�c enthalpy
k1; k2; k3 Compressor characteristic coe�cients (2.24)
kv Surge control law parameter (5.64)
kp; ki Proportional and integral gain of speed controller (5.65)
lc Nondimensional compressor length (2.2)
li Nondimensional length of inlet duct (2.2)
le Nondimensional length of exit duct (2.2)
l Mean 
ow length (5.27)
m;mc Compressor mass 
ow
m Compressor duct 
ow parameter (4.45)
mchoke Choking mass 
ow (2.45)
p Pressure
pp Plenum pressure (5.1)
p̂max Upper bound on p̂ used to calculate �2 (5.82)
p0;m0 Equilibrium value of pp and m (5.54)
rn Phase angle of mode number n of rotating stall (4.59)
q Dimension of state space in Chapter 4
s(�; z) Signal. Used in convergence proof (2.90)
s Speci�c entropy
u Control variable
v Speci�c volume
z1; z2 Error variables
z State vector. z = (z1 z2)

T
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Greek uppercase

��bf Loss in e�ciency due to back
ow (5.39)
��c Loss in e�ciency due to clearance (5.38)
��v Loss in e�ciency in the volute (5.40)
��d Loss in e�ciency due to incomplete di�usion
�� Approximation error �� = �0 � �apprx (2.64)
�h0c Ideal speci�c enthalpy delivered to 
uid (5.9)
�h0c;ideal Total speci�c enthalpy delivered to 
uid (5.54)
�hii;�hid Incidence losses in impeller and di�user (5.21), (5.26)
�hfi;�hfd Friction losses in impeller and di�user (5.27), (5.34)
�t Nondimensional turbine (drive) torque (4.10)
�c Nondimensional compressor torque (4.10)
� Positive de�nite constant matrix (2.133)
�1;�2 Constants in MG model (4.12), (4.46)
�G1;G2 Feedback interconnection of G1 and G2, Theorem 3.1
� Axial mass 
ow coe�cient, annulus averaged (2.1)
�T ( ) Throttle mass 
ow coe�cient (2.1)

�̂d Time varying mass 
ow disturbance, section 2.2.5

	d(�) Monotonically decreasing non negative function,
Corollary 2.1

�d(�) Monotonically decreasing non negative functions,
Corollary 2.2

	 Pressure coe�cient (2.1)
	T (�) Throttle characteristic (2.9)
	v(�] CCV characteristic (2.11)
	c(�) Compressor characteristic (2.7)
	e(�) Equivalent compressor characteristic (2.10)
	s(�) In-stall characteristic (2.17)
	es(�) Equivalent in-stall characteristic (2.16)

	̂d Time varying pressure disturbance, section 2.2.5
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Greek lowercase

� Virtual control used in backstepping
�1; �2; �1; �2 Fluid angles
�1b; �2b; �1b; �2b Constant blade angles
�i Angle of incidence (5.15)
�1; �2; �3 Class K1 functions (2.70), (2.71)

T Throttle gain, parameter proportional

to throttle opening (2.9)

 CCV gain, parameter prop. to valve opening (2.11)
�1; �2 Constants (5.66), (5.81)
�; �1; �2 Constants (5.78)

�n �n
4
= n� � rn(�) (4.63)

� Nondimensional x-coordinate
�0; �1; �2; �3; �4 Constants. Used in Young's inequality
�i Isentropic e�ciency (5.35)
� Angular coordinate
#1; #2 Adaption gains, Theorem 2.4
�1; �2 Constants used in passivity proofs (3.9), (3.21)
� Ratio of speci�c heats, � =

cp

cv

� Viscosity (4.49)
�1; �2 Constants (2.114)
$ Convergence rate (5.99)
� Nondimensional time (2.5)
% Constant in the MG model (2.4)
� Density
�01 Inlet stagnation density
� Slip factor (5.8)
& Constant (5.60)
�t Turbine (drive) torque (4.10)
�c Compressor torque (4.10)
��
c
; �+
c

Compressor torque for neg. and pos. 
ow (5.10)
�df Disc friction torque (5.13)
� Local axial mass 
ow coe�cient (4.27)
�0 Equilibrium value of � (2.18)
�apprx Approximation of �0 (2.64)
�choke Upper bound on � (2.151)
�m Lower bound on � (2.153)
~� Velocity potential (4.33)
~�0 Disturbance velocity potential (2.34)
 0 Equilibrium value of  (2.18)
 c0 Shut o� value of compressor characteristic (2.7)
!H Helmholtz frequency
! Rotational velocity of spool (4.8)
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Appendix B

Some Thermodynamic and

Fluid Mechanical Relations

B.1 Flow and Pressure Coe�cients

In this section various nondimensional quantities related to compressors are pre-
sented.

Flow Coe�cient

The 
ow coe�cient is de�ned as

� =
Cx

U
; (B.1)

where Cx is the axial velocity and U is the blade speed. Using the ideal gas law it
is found that

� =
�01RT01

p01

Cx

U
=

p
RT01

U

m
p
RT01

Ap01
=

p
RT01

U
F; (B.2)

where F is known as the (nondimensional) 
ow function. Mention must be made
to another form of nondimensional 
ow, the corrected mass 
ow de�ned as

mcorr =
m
p
T01=Tref

p01=pref
: (B.3)

The reference state is usually taken as sea level static. It can be shown that the
corrected mass 
ow is related to the 
ow coe�cient as

� =

p
T01=Tref

�ref
p
RUA

mcorr; (B.4)

that is, for constant U , � is proportional to mcorr.
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Pressure Coe�cient

The total to static pressure rise coe�cient is de�ned as

	 =
p1 � p01

�U2
: (B.5)

In (Cohen et al. 1996) it is shown that

	 = �i
cp�T0s
U2

= �i
�h0s
U2

; (B.6)

where �i is the isentropic e�ciency, �T0s is the temperature rise in the stage and
h0s is the enthalpy rise. The fraction cp�T0s=U

2 is known as the temperature
coe�cient.

Speed Coe�cient

Blade speed U can be nondimensionalized by dividing with inlet stagnation sonic
velocity a01,

U

a01
=

U

�RT01
=

D�N

�RT01
=

D�

�RTref
Ncorr; (B.7)

where Ncorr = N=
p
T0=Tref is known as the corrected speed. Note that by intro-

ducing the Greitzer B-parameter it is found that

U

a01
=

D�

�RTref
Ncorr = 2B

s
AcLc

Vp
: (B.8)

Thus, B can be used as nondimensional compressor speed, and it is connected to
Ncorr as

Ncorr = 2B

s
AcLc

Vp

�RTref

D�
: (B.9)

B.2 Isentropic Processes

Let s denote speci�c entropy, u denote speci�c internal energy, v = V=m = ��1

denote speci�c volume and h = u+ pv denote speci�c enthalpy. It can be shown
(Eastop and A.McConkey 1986), that

ds =
dQ

T
; (B.10)

where
dQ = du+ pdv (B.11)

is known as the di�erential form of the non-
ow energy equation. It follows that

Tds = du+ pdv

Tds = dh� vdp: (B.12)
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With constant speci�c heat capacities cp and cv,

Tds = cvdT + pdv

Tds = cpdT � vdp: (B.13)

For isentropic processes, that is reversible and adiabatic, ds = 0, and accordingly

dT = � p

cv
dv

dT =
v

cp
dp; (B.14)

which in turn implies
dp

p
= ��dv

v
; (B.15)

where � =
cp

cv
is the ratio of speci�c heats.

B.3 Mass Balance of the Plenum

The plenum process is assumed to be isentropic, which means that the di�erential
form (B.15) of the isentropic relation is valid, so that

dpp

pp
= ��dvp

vp
= �

d�p

�p
; (B.16)

where it has been used that

� =
1

v
) d�

�
= �dv

v
: (B.17)

It follows that
_pp =

�pp

�p
_�p = �RTp _�p: (B.18)

The mass balance of the plenum is

_�p =
1

Vp
(m�mt); (B.19)

and it follows that

_pp =
�RTp

Vp
(m�mt) =

a2
s

Vp
(m�mt); (B.20)

where as =
p
�RTp is the plenum sonic velocity. As velocities in the plenum are

assumed negligible, a0 can be used in (B.20). The sound speed in the plenum will
wary as both temperature and pressure in the plenum varies with time. In (Simon
et al. 1993), a time mean speed of sound in the plenum, as was used. Another
approach to avoid using the plenum sonic velocity was taken in (Greitzer 1976a).
It was recognized that by assuming that the temperature ratios of the compression
system are near unity, the quantity �p=pp = RTp is not appreciably di�erent from
�01=p01. Thus, the speed of sound at ambient conditions can be used in (B.20).
This approach is also taken in this thesis.



130 Some Thermodynamic and Fluid Mechanical Relations

B.4 Flow through a Nozzle

The stagnation temperature is

T0 = T +
1

2cp
C2
x
; (B.21)

where T is the static temperature and Cx is the velocity of the 
ow. The Mach
number is

M =
Cx

as
; (B.22)

where
as =

p
�RT; (B.23)

is the sonic velocity. Then C2
x
=M2�RT and it follows that

T0

T
= 1 +

M2�R

2cp
= 1 +

�� 1

2
M2: (B.24)

Using the isentropic relation

T0

T
=

�
p

p0

� (��1)

�

; (B.25)

it is found that
p0

p
=

�
1 +

�� 1

2
M2

� �

��1

: (B.26)

The mass 
ow is
m = �ACx; (B.27)

where A is the 
ow crossectional area. Alternative forms are

m = �AMas = A�
p
�RTM = A

pp
RT

p
�M

= A
p0p
RT0

p

p0

r
T0

T

p
�M; (B.28)

where it is used that � = p=RT . Then, by the use of (B.25) and (B.26), it is found
that

m = A
p0p
RT0

p
�M

�
1 +

�� 1

2
M2

�� �+1

2(��1)

: (B.29)

The critical mass 
ow, or choked 
ow, is found by inserting M = 1 and using the
ideal gas law in the form RT0 = �0=p0. This gives

mchoke = A
p
��0p0

�
2

�+ 1

� �+1

2(��1)

(B.30)

= A�0a0

�
2

�+ 1

� �+1

2(��1)

: (B.31)
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B.5 Compressor Pressure Rise

Here equation (5.42) for the compressor pressure rise is derived. The compressor
total to static isentropic e�ciency can be written

�i(m;U1) =
h2s � h01

h02 � h01
; (B.32)

where h2s is the outlet static enthalpy obtained with isentropic compression, h01
is the inlet stagnation, or total, enthalpy and h02 is the outlet stagnation, or total,
enthalpy.
Considering a perfect gas, we have that h = Tcp, where cp is the speci�c heat
capacity at constant pressure. For a perfect gas, cp is constant. The e�ciency
now is

�i(m;U1) =
T2s � T01

T02 � T01
=

T2s

T01
� 1

T02

T01
� 1

: (B.33)

Using the relation for isentropic compression (B.25),

�i(m;U1) =

�
p2

p01

���1
� � 1

T02

T01
� 1

=

T01cp

��
p2

p01

���1
� � 1

�
cp(T02 � T01)

: (B.34)

For a radially vaned impeller (Watson and Janota 1982):

�i(m;U1) =

T01cp

��
p2

p01

���1
� � 1

�
�h0c;ideal

; (B.35)

which can be rearranged to

p2

p01
=

�
1 +

�i(m;U1)�h0c;ideal
T01cp

� �

��1

: (B.36)
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Appendix C

Including a Close Coupled

Valve in the Moore-Greitzer

Model

Equation numbers starting with MG are references to the paper Moore and Gre-
itzer (1986).
Equation (MG5), which gives the pressure rise over the compressor is modi�ed to

pE � p1

�U2
= NsF (�)� 1

2a

�
2
@�

@�
+
@�

@�

�
| {z }

Equation (5) in Moore and Greitzer (1986)

�	v(�); (C.1)

where 	v(�) is the pressure drop across the CCV, and pE now is the pressure at
the exit of the CCV. Using equation (MG23), the pressure rise over the equivalent
compressor is written

	e(�) = NsF (�) � 1

2
�2| {z }

	c(�)

�	v(�): (C.2)

Using this, the local (in �) and annulus averaged momentum balances (equations
(MG42) and (MG43)), are modi�ed to

	(�) + lc
d�

d�
=  c(�� Y��)�  v(�� Y��)�mY� +

1

2a
(2Y��� + Y���) (C.3)

and

	(�) + lc
d�

d�
=

1

2�

Z 2�

0

f c(�� Y��)�  v(�� Y��)g d�: (C.4)

In the case of pure surge, that is Y � 0, the two momentum balances are the same
and is reduced to

_� =
1

lc
(	c(�)�	v(�)�	); (C.5)
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which is the same expression as used in Simon (1993). The CCV has a character-
istic given by

	v(�) =
1


2
�2; (C.6)

where 
 > 0 is proportional to the valve opening. Y is now represented by a single
harmonic approximation

Y � =WA(�)sin(� � r(�)) =WA(�)sin(�); (C.7)

where A(�) is the time varying stall amplitude. A residue R, is de�ned as

R
4
= Y �

�
� Y� : (C.8)

The Galerkin approximation is calculated using the weight functions

h1 = 1; h1 = sin �; h2 = cos � (C.9)

and the inner product

hR; hii = 1

2�

Z 2�

0

R(�)hi(�)d�: (C.10)

Calculating hR; hii = 0 for i = 1; 2; 3, we get

M1 =
1

2�

Z 2�

0

 e(� +WA sin �)d� = 	+ lc
d�

d�
(C.11)

M2 =
1

2�

Z 2�

0

 e(� +WA sin �) sin �d� = (m+
1

a
)
dA

d�
(C.12)

M3 =
1

2�

Z 2�

0

 e(� +WA sin �) cos �d� = �(dr
d�
(m+

1

a
)� 1

2a
)A:(C.13)

By using (C.2) and (2.7) the moments Mi are calculated to be

M1 =
�

2

�
4 0 � 2H�3

W 3
� 2W 2A2


2
� 3H�A2

W
� 4�2


2

+
6H�2

W 2
+ 3HA2

�
(C.14)

M2 =
�

2

�
�3H�2A

W 2
� 3HA3

4
� 2AW�


2
+
6AH�

W

�
(C.15)

M3 = 0: (C.16)

By combining (C.11) to (C.13) with (C.14) to (C.16) and rearranging, the following
di�erential equations, which correspond to (MG60) and (MG61), for � and J = A2

are found:

_� =
H

lc

 
� 	�  0

H
� 1

2

�
�

W
� 1

�3
+ 1 (C.17)

+
3

2

�
�

W
� 1

��
1� J

2

�
� 1


2

�
W 2J

2H
+
�2

H

�!
(C.18)

_J = J

 
1�

�
�

W
� 1

�2
� J

4
� 1


2
4W�

3H

!
�: (C.19)



135

The di�erential equations for  and r are left unchanged by the introduction of
the CCV.
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Appendix D

Numerical Values Used in

Simulations

Symbol value Symbol value Symbol value

R 0:1m � 1:15 kg
m3 as 340m

s

lE 8 lI 2 Lc 3m

Vp 1:5m3 Ac 0:01m2 a 0:3

H 0:18 W 0:25  c0 0:3

I 0:03kgm2 m 1:75

Table D.1: Numerical values used in the simulations of Chapters 2, 3 and 4.

Symbol value Symbol value Symbol value

D2 0:128m Dt1 0:074m Dh1 0:032m

� 0:9 p01 105Pa �1 1:15 kg
m3

T01 303K �1 �=2 �1b 0:61

Re 100000 D 0:02m � 1:4

cp 1005 J
kgK

Cm 0:01 a01 340m
s

Vp 0:21m3 Lc 1:253m J :001kgm2

Table D.2: Numerical values used in the simulations of Chapter 5.
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Appendix E

Bounds on the Controller

Parameters of Theorem 2.5

In this appendix the upper and lower bounds on the controller gain c3 de�ned in
Theorem 2.5 are calculated. The numerical values used are

Sym. value Sym. value Sym. value Sym. value

Jmax 4 W 0:25 H 0:18  co 0:3006

�choke 0:8 �m 0:2

Table E.1: Numerical values

The equilibrium value of the mass 
ow coe�cient �0 is found by solving equation
(2.63) with respect to �0. The lower bound C1 de�ned in (2.178) is

C1 =
3H

4W 2

�
�20
4W

+W + �0

�
� c2: (E.1)

Using (2.184), the upper bound C2 is calculated as

C2 = �m � �0

�m

4W

3H

 
(�0��m)	̂c(�0��m)�c2(�0��m)2� �2

m

W 2
� 2�m

W

!
+c2 (E.2)

With the help of symbolic toolbox in MATLAB, the following expressions are
found for C3, C4, C3 and C4:

C3(c2; �choke) = � T0 + T1

2V 4Jmax
(E.3)

C3(c2; �choke) = � T0 � T1

2V 4Jmax
; (E.4)

where

T0 = �4�2
choke

� 8�choke �0 � 4�20 + 3HWJmax �choke �0
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�3W 2HJmax �choke � 3W 2HJmax �0 + 3HWJmax �
2
choke

+2W 4Jmax c2

T1 = �2
p
2
p
T2

T2 = � �3HWJmax �
2
choke

� 2�2
choke

� 4�choke �0

�3W 2HJmax �choke + 3HWJmax �choke �0

+2W 4Jmax c2 � 2�20 � 3W 2HJmax �0
�
(�choke + �0)

2

and

C4(c2; �m) = � T0 + T1

2V 4Jmax
(E.5)

C4(c2; �m) = � T0 � T1

2V 4Jmax
; (E.6)

where

T0 = �4 (��m)2 � 8 (��m)�0 � 4�20 + 3HWJmax (��m)�0
�3W 2HJmax (��m)� 3W 2HJmax �0 + 3HWJmax (��m)2
+2W 4Jmax c2

T1 = �2
p
2
p
T2

T2 = � �3HWJmax (��m)2 � 2 (��m)2 � 4 (��m)�0
�3W 2HJmax (��m) + 3HWJmax (��m) �0
+2W 4Jmax c2 � 2�20 � 3W 2HJmax �0

�
((��m) + �0)

2

As the value of �0 depends on the choice of c2 and c3, the gains have to be
chosen �rst, then �0 is calculated, and �nally the bounds cmin3 and cmax3 have to
be calculated and checked against c3. After some iterations of this procedure the
following gains are used: c2 = 1 and c3 = 0:55, �0 is calculated to �0 = 0:34 and
the bounds are calculated to be

C1(c2; �0) = 0:52

C2(c2; �0; �m) = 2:24

C3(c2; �0; �choke) = 0:33

C3(c2; �0; �choke) = 419:34

C4(c2; �0; �m) = 0:0011

C4(c2; �0; �m) = 6:83:

Now,

cmin3 = max fC1; C3; C4g
= max f0:52; 0:33; 0:0011g
= 0:52; (E.7)

and

cmax3 = min
�C2(c2; �m); C3(c2; �choke); C4(c2; �m)	

= min f2:24; 419:34; 6:83g
= 2:24: (E.8)
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As can be seen the choice c3 = 0:55 now satis�es

cmin3 = 0:52 < c3 = 0:55 < cmax3 = 2:24: (E.9)


