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Abstract This report contains a description of a Beddoes-Leishman type dy-
namic stall model in both a state-space and an indicial function formulation. The
model predicts the unsteady aerodynamic forces and moment on an airfoil section
undergoing arbitrary motion in heave, lead-lag, and pitch. The model includes
the effects of shed vorticity from the trailing edge (Theodorsen Theory), and the
effects of an instationary trailing edge separation point. The governing equations
of the model are nonlinear, and they are linearized about a steady state for appli-
cation in stability analyzes. A validation is carried out by comparing the response
of the model with inviscid solutions and observing the general behavior of the
model using known airfoil data as input. The proposed dynamic model gives re-
sults identical to inviscid solutions within the attached-flow region; and it exhibits
the expected dynamic features, such as overshoot of the lift, in the stall region.
The linearized model is shown to give identical results to the full model for small
amplitude oscillations. Furthermore, it is shown that the response of finite thick-
ness airfoils can be reproduced to a high accuracy by the use of specific inviscid
response functions.
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Notations

a’t Arm to equivalent pressure center

Ay, A Constants in the approximation to the indicial function ¢
b1,bo  Exponents in the approximation to the indicial function ¢
A, Amplitude of lead-lag motion of the airfoil
c Chord length
CrL Lift coefficient
Cr.a Linear lift slope coefficient
Cb Drag coefficient
Cu Moment coefficient
f Non-dimensional position of the separation point
hy /s Heave coordinate at mid-chord
k Reduced frequency we/(2Up).
P;,Q; Terms in linear first order equations
Non-dimensional time 2 fg Udt
Time
To Characteristic time equal the to travel-time of one half chord ¢/(2Uy)
T Time lag related to the shed wake effect Tq/b;
T Time lag related to the shed wake effect T /bo

Ty Characteristic time lag related to the pressure distribution
T, Time-varying time constant ¢/(2U (t))
Tp Characteristic time lag related to the separation point
U Relative velocity of the air dependent of airfoil motion
Up Free stream velocity
wz/y  Downwash at three-quarter chord point
x; Aerodynamic state variables

Y1,y2  Aerodynamic state variables related to the downwash ws /4

e Angle of attack
Qi34 Angle of attack at three-quarter chord point

w Angular velocity

A Relative magnitude of stream-wise velocity amplitude wA, /Uy
p Density of air

10) Indicial function for lift response
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1 Introduction

A new Beddoes-Leishman (B-L) type model of unsteady airfoil aerodynamics and
dynamic stall is suggested. Both state-space and indicial formulations of the model
are presented. The explicit state-space formulation enables stability analysis for
wind turbines based on eigenvalue analysis, and the implicit indicial formulation is
presented for effective numerical solution of the aeroelastic equations. An indicial
version of the original B-L model has already for some time been used in the
aeroelastic code HAWC [1, 2].

An unsteady aerodynamic model is used to describe the unsteady aerodynamic
forces on an airfoil undergoing arbitrary motion in a flow. Since the first aeroelastic
calculations on aircrafts began, unsteady airfoil aerodynamics has been studied ex-
perimentally and theoretically. Theodorsen’s potential flow approximation to the
unsteady lift and pitching moment [3] formed the basis for analysis of fixed wing
aircrafts operating below stall in the attached flow region. The occurrence of stall
flutter of propellers, compressors, and rotor wings, and the continuous optimiza-
tion of helicopter design led to the need for analysis of unsteady aerodynamic
forces in the stalled region. Until the 50’s the phenomenon dynamic stall was only
studied experimentally (see e.g. [4]); the first analytical dynamic stall models were
introduced in the late 70’s. Friedmann describes three models in his review paper
from 1983 [5]; since then models have improved and others have been introduced.

Very few of these models are originally formulated in the state-space, one exam-
ple is the ONERA model [6, 7]. The B-L model was originally introduced in a form
using indicial functions because this is computationally the most effective formula-
tion. There are many publications on the model; early papers by Beddoes [8, 9, 10]
deals with the unsteady lift and pitching moment. These papers are followed by
a cooperative paper by Leishman and Beddoes [11] introducing a complete model
for unsteady lift, drag, and moment. A revised version of this work is given in
[12]. The B-L model includes the effect of the unsteady two-dimensional inviscid
wake, the effects of trailing and leading edge flow separation, and compressibility
effects similar to the Piston Theory. State-space formulations of the B-L model
have been published for attached flow conditions in [13, 14] and for the complete
dynamic stall model in [15]. Details on the computation of unsteady drag is given
by Leishman in [16], and an extension of the modelling of the near wake is given by
Beddoes in [17] taking into account spanwise effects. A general review of unsteady
airfoil aerodynamics can be found in [18].

This report introduces new state-space and indicial formulations of a dynamic
stall model very similar to the B-L model. The suggested model is intended for
wind turbine aeroelasticity, where compressibility effects and flow separation initi-
ated from the leading edge can be neglected. This is due to a typical maximum tip
speed of 70-80 m/s and the use of relative thick airfoils with a typical thickness of
no less than 15 %. Hence, the B-L model is modified to assume incompressibility
and the unsteady effects of leading edge flow separation is removed. Wind tur-
bines have the risk of stall-induced lead-lag vibrations. The unsteady lift due to
the time-varying flow velocity for an airfoil vibrating in lead-lag [19] is therefore
included in the present state-space formulation, which is not the case in previ-
ous state-space formulations of the B-L model [13, 14]. For the implementation
of the present model in aeroelastic wind turbine codes, an indicial formulation
is provided and the robustness of the model with respect to the input has been
kept in mind. The only input is the static lift, drag, and moment curves, four
constants determining the unsteady inviscid response (two time-constants), and
two time-constants determining the unsteady viscous effects.

The report is arranged as follows: In Section 2 the suggested B-L type dynamic
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stall model is described by its state-space formulation, including a linearization
of the model. An indicial formulation of the model is described in Section 3, and
in Section 4 the suggested empirical model is compared to numerical solutions of
Euler and Navier-Stokes equations.
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2 State-space formulation

The state-space formulation of the suggested dynamic stall model is presented in
this section. The dynamics of the aerodynamic system is related to the lift, and
the unsteady drag and pitching moment are then determined from the unsteady
lift. The section is therefore divided into three subsections describing these three
forces separately, followed by a subsection presenting the closed set of nonlinear
equations, and finally a subsection dealing with the linearization of the model.

2.1 Lift

The original B-L model includes leading edge separation and the impulsive forces
due to compressibility. For wind turbines, Mach numbers are lower than 0.3 and it
is assumed that the flow is incompressible, whereby added mass forces substitute
the impulsive forces. Furthermore, the leading edge (LE) separation is assumed
not to be a dominating phenomenon for the relative thick airfoils used on wind
turbine blades. These assumptions lead to an alternative formulation of the model
where lift under attached flow conditions is given by the Theodorsen Theory, and
only trailing edge (TE) separation is considered under stalled flow conditions.

Attached flow

The unsteady lift on a symmetric airfoil performing harmonic pitch and plunge
motion of small amplitude in an attached flow can be approximated by the Theo-
dorsen Theory [3]. The unsteady effect of vortex shedding due to changes in circu-
lation on the airfoil is derived analytically by assuming that the airfoil is infinitely
thin, and that the vortex wake is harmonic and travels with the free-stream ve-
locity in a straight line behind the airfoil, as shown schematically in Figure 1.

The downwash at the three-quarter point ws,, depends only on the pitch and
plunge motion of the airfoil, and the free-stream velocity U is assumed to be
constant in Theodorsen’s original derivations. A time-varying free-stream velocity
from air turbulence and arbitrary motion of the airfoil (e.g. combination of plunge
and lead-lag) are not included because the pure harmonic wake assumption fails
in these cases. Different approximations to the Theodorsen Theory have been
developed to handle these cases; a study of these approximate theories can be
found in [19].

Van der Wall and Leishman concluded that for moderate reduced frequencies,
all theories give the same result as the Theodorsen theory, when a time-varying
free-stream velocity U = U (¢) is inserted in the Duhamel’s integral formulation.
In this case, the unsteady lift is given as

L= ﬂp% (Uo'z +Ua + 51/2) +mpcU <w3/4(0) o(s) + /s d1;3/4 (s — o) da) (1)
0 o

where (") = 0/0t, c is the chord length, p is the air density, « is the geometric
angle of attack between chord and free-stream flow, h,,, is the plunge acceleration

harmonic wake

U Wy,

Figure 1. Schematic of the assumptions of the Theodorsen theory.
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at the mid-chord, ¢ is an indicial function, and s is the non-dimensional time-scale

2 t
s:—/ Udt (2)
¢ Jo

describing the distance travelled by the wake in the time-varying free-stream.

The first term in (1) is the non-circulatory part of the lift due to acceleration
of the air mass 7pc?/4. For moderate reduced frequencies, the acceleration parts
of this term ﬁl/z and Ua will be an order lower than the velocity part Ucé, and
these terms are therefore neglected in the modelling of the added mass term.

The second term in (1) is the circulatory lift with Duhamel’s integral describing
the memory effect of previously shed vorticity into the wake. The integral (2) can
not be evaluated analytically, because the free-stream velocity U is a nonlinear
function of the structural state variables describing the arbitrary airfoil motion.
However, it is still possible to replace the memory term in (1) with a set of state-
space differential equations that are nonlinear in the state variables. The memory
term can be considered as an effective downwash at the three-quarter point

off * dwsy,
w3/4 = w3/4(0) (b(s) + d (b(s - U) dU (3)
0 0-
By integration by parts on Duhamel’s integral yields
S d¢
W = (5)00) = [ wnlo) s = 0)do )
0

Performing the variable substitution (2) for ¢ and s, the effective downwash can
be written as
t t
ush = wan(000) - [ wlt) 52 (2 [ var) ar Q
0 ¢
where t and t' are related to s and o, respectively, through (2).
For a step-change in angle of attack the indicial function ¢ is the Wagner func-
tion, and for sharp edge gust it is the Kiissner function. Both functions are often
approximated by two time-lags as

¢(S) =1- Ale_bls — A26_b23 (6)

where the constants A;, Ay, by, and by may vary depending on application (see
e.g. [10] for values for helicopter applications).

The two time-lags terms of ¢ can be represented by two first order differential
equations. Substitution of (6) with s = 2 f:, U(7)dr into (5), and differentiation
with respect to ¢’ yields

do (2 [t 2U(#) < 2t

T — - 7 A 1cft’ U(T)dT

o (c /t’ U(T)dT> - ; b;Aze (7)

Substitution of (7) into (5) yields that the effective downwash can be written as
wify = waya(H)(1 = A1 = Az) +y1(t) + ya(t) (8)

where the new state variables y; are
2 1 :
yi(t) = biAiE/O wayu () U(H)e b2 Lo Umdr gyt 9)

where 7 = 1, 2. Differentiation (9) with respect to ¢ shows that aerodynamic state
y; is the solution to the differential equation

. 2U 2U

Ui + biT Yi = biAiT Ws/4 (10)

where i = 1,2 and y;(0) = 0. The equation is linear in the aerodynamic state vari-
able y;, however these states couple nonlinearily to the structural states through
the dependency of U.
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Hence, the ODEs (10) for the effective downwash determine the dynamics of the
near wake influence on the unsteady lift coefficient for attached flow. However, this
formulation in downwash w;,, is inconvenient because the definition of downwash
is ambiguous in the large range of angles of attack that a wind turbine blade
encounters. The original B-L formulation in geometrical angle of attack at the
three-quarter point as,, is therefore applied.

Using the relation as,, = w;,,/U and introducing the variable transformation
y; = Uz;, the ODEs (10) become

.2 cU 2U
i+~ (bi + 2U2> T; = biAiT Oa/s (11)

with initial conditions x;(0) = 0, and where it has been assumed that the free-
stream velocity U is non-zero. With the new state variables z; and x5, it is possible
to compute an effective angle of attack

OéE:Oé3/4(].—A1 —A2)+.Z'1(t)+l'2(t) (12)
whereby the unsteady lift for attached flow (1) can be rewritten as
C? =2m(ap — ap) + me i/ (2U) (13)

where ay is the angle of attack at zero lift needed for chambered airfoils. Note that
the acceleration terms of the added mass are neglected in this expression, because
they for moderate reduced frequencies are an order lower than the pitch-rate term.
The term % in the differential equation (11) for the states z; and z» has the
same order as the reduced frequency, thus it can also be neglected if the reduced
frequency is small compared to the non-dimensional time constants b; and bs. In
that case, the present model reduces to the original B-L model where the effect of
time-varying free-stream velocity is neglected.

Stalled flow with trailing edge separation

The B-L model deals with both LE and TE separation. The LE separation is
not included in the present model because it is not a dominating phenomenon for
wind turbine applications, where the airfoils have thicknesses of no less than 15 %.
Furthermore, the modelling of the vortex travel during LE separation requires that
the time of the vortex shedding is marked on an additional time-scale, whereby
the model becomes implicit and impractical for stability analysis.

The basic assumption in the B-L model of TE separation is that the static lift
curve can be represented by the expression

C% = Cra (”7 W) (a — ao) (14)

which is the lift on a flat plate in a potential Kirchhoff flow [20]. The constant
CL,o is the slope of the lift curve in the linear region of attached flow, and the
function f5¢(«) determines the separation point for the TE separation as defined
in Figure 2. The flow is fully attached for f =1 and fully separated for f = 0.

Ye <

=/

Figure 2. The trailing edge separation point f defined in the Kirchhoff flow past a
flat plate.
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Assuming that the static lift curve is given, the separation point can be deter-
mined as function of angle of attack by inversion of Equation (14)
2

fst — (2 Czt(a) ) _ 1) (15)

Cr.ola—ag

There are two issues of this inversion and the representation of the lift curve by
(14) that must be handled. First, the separation point cannot exceed the LE of
the airfoil, f5* < 1, the linear lift slope is therefore defined as

Cr.a = max{Cy(@)/(a — ao)} (16)

for all angles of attack in the attached flow region. Usually, lift curves provided as
input to the model have a range of low angles of attack where they are completely
linear and a slope given by (16). However, in cases where lift curves are provided
directly from measurements, or CFD computations, it can be necessary to use
linear regression to determine a linear lift curve in a range of lower angles of
attack with fully attached flow.

Second, the two angles of attack o™ and o at full separation f5*(a*®) =0
on the upper and lower airfoil surface, respectively, can be determined from the
equation |C5'(a™®)| = |OL o (a*™ — ag)/4|. Beyond these angles of attack the
static lift curve cannot be represented by expression (14), and the separation
point function is set to zero f3* = 0.

To handle variations in a exceeding the limits of full separation, the static lift
curve is represented by a linear interpolation between lift coefficients for fully
attached and fully separated flow

O} = Crala—ag) f** + CF(a) (1 = f*) (17)
where the lift coefficient for fully separated flow is computed as
C5' — Cpo(a — ap) f5

1— fst
from the static lift curve C'§* and the separation point function f5* defined by (15).
This function equals the static lift curve beyond the angles of attack a*f
the flow becomes fully separated (f** = 0).
Note that Equation (18) poses a problem for the angles of attack in the fully
attached region where f5¢ = 1. However, by substitution of the separation point
function (15) into (18), it can be shown that

Cst (Oé)

C%(a) — L2

o = (18)

where

when f% — 1 for Cp o(a — ap) = C}(a) (19)

Hence, the lift for fully separated flow at low angles of attack is half the lift for
fully attached flow.

Figure 3 shows an example of a static lift curve represented by the interpolation
(17). The method for obtaining this representation of C5' is: Find the angle of
zero lift ap and the maximum linear lift slope C'f, o, then compute the separation
point function f5¢ from (15) using the original lift curve, and finally compute the
lift coefficient for fully separated flow C%* from (18).

Dynamics of trailing edge separation

Two state variables in the B-L model are used to describe the dynamic behavior
of TE separation. The separation is related to the pressure distribution over the
airfoil, and the pressure is related to lift on the airfoil; for a certain lift there is
a certain pressure distribution with a certain separation point. It is assumed that
there is a time-lag between the pressure and lift, modelled as

i3+ T, 'ws =T, CL(t) (20)
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-0.5
1 / Lift coefficient for stationary flow — |

Lift coefficient for fully attached flow —

Lift coefficient for fully separated flow ——

Position of separation point
1 1

-1.5
-40 -20 0 20 40

Angle of attack [deg]

Figure 8. Example of a static lift curve represented by the interpolation (17), where
the lift coefficient for fully separated flow is obtained by (18) and the separation
point function is obtained by (15) using the original static lift curve.

where C7 (t) is the unsteady lift coefficient for attached flow given by (13), and T},
is the time constant for the pressure lag. The initial condition is z3(0) = 0.

The state variable z3 is a lift coefficient C?' = z3(t) with a time-lag to the actual
lift coefficient CY for attached flow. This coefficient determines an equivalent angle
of attack that gives the same quasi-steady lift: ay = Cf'/CLA + ap. For this angle
of attack, an equivalent quasi-steady separation point f' = f*(ay) can be obtained
from Equation (15).

The second state variable of the TE separation arises due to dynamics of the
boundary layer, which causes the separation point to lag behind the quasi-steady
value f’ as described by the equation

by + T, wg =T, (1) (21)

where Ty is a time constant for the lag in the boundary layer, and 24(0) = 0. The
variable z4 is the fourth and last state variable of the present model. Using (17),
the unsteady separation point f” = x4(t) determines the unsteady lift coefficient
that includes the effect of TE separation

CP™ = Cp olap — ag) f" + CB(ap) (1 — ) + 7Tyd (22)

where the added mass term from (13) related to the pitch rate is included, and
the time constant
c

has been introduced. Note that this quantity is not constant in time due to the
time-varying flow velocity U = U(t).

The total unsteady lift on an airfoil under the attached and stalled flow con-
ditions can now be determined from Equation (22) by simultaneous solution of
the state equations (11), (20), and (21). The direction of the unsteady lift force is

assumed to be perpendicular to the effective angle of attack ag.
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2.2 Drag

The model for unsteady drag differs from the original B-L model in the way that
the unsteady drag is bounded to variations about the static drag curve provided
as input to the model, which is the method used in the previous implementation
in the aeroelastic code HAWC [1, 2]. The drag is considered to consist of basically
two parts: Induced drag and viscous drag. Induced drag is caused by angle shift of
the effective lift force due to the downwash induced by the wake. Viscous drag is
caused by the viscous boundary layer and consists of friction and pressure drag.
The two types are now introduced into the model.

Induced drag

Induced drag is caused by the shift of the unsteady lift angle due to the wake
downwash. It is always present for wings with finite span because of the tip vortices
and the resulting trailing edge vortex shedding. However, when modelling an airfoil
in two dimensions induced drag is an unsteady phenomenon only.

Under steady conditions (the airfoil is not moving and inflow is constant), the
circulation on the airfoil is constant, no wake is shed, and the aerodynamic force
is perpendicular to the geometric angle of attack. Under unsteady conditions, the
induction of the shed wake yields that the effective angle of attack ag is lagging
behind the geometric angle of attack a. The unsteady lift force is perpendicular to
ag, and thereby has a component in the drag direction defined by the geometric
angle of attack. This phenomenon is illustrated in Figure 4. The induced drag
coefficient is assumed to be given by

ACHY = (o — ap) CP" (24)

where ag and ngn are computed from (12) and (22), respectively. The geometric
angle of attack a is computed as the angle between the chord and the free-stream
flow, including the airfoil motion.

Viscous drag

The viscous drag originates from the boundary layer. Under attached flow con-
ditions it can be characterized as friction drag. The friction drag vary little with
angle of attack, and gives an almost steady contribution to the total drag; any un-
steadiness is due to fluctuations in transition between the laminar and turbulent
boundary layer. When the TE separation develops, there is a large increase in the
viscous drag due to pressure drag. The pressure in separated boundary layer is
lower than in the attached boundary layer upstream, which by summation yields
a force component in the drag direction.

Figure 4. Induced drag is caused by the shift of the unsteady lift angle due to the
wake downwash.
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In the B-L model, the unsteadiness of the pressure drag due to the variations in
TE separation point f is deduced from the analytical expression for the pressure
drag on a flat plate in a potential Kirchhoff flow [20]. Similar to the expression for
the lift (14), this expression is

2
Cgirchhoﬁ" — CL,aa2 <1 _2\/7> (25)

It shows that the pressure drag for this flow is the product Cf, ,a? weighted with
the separation point dependent factor (1 — 1/f)?/4. Beddoes and Leishman [11]
notes that expression (25) does not give a favorable comparison with experimental
test except for minor separations. The B-L model therefore applies an alternative
procedure, however still based on Kirchhoff’s result.

In the present model, it is assumed that the factor (1 — /f)?/4 describes the
relative variation of the pressure drag due to variation of separation point. The
unsteady contribution to the total drag because the unsteady separation point f”
lags behind the separation point for the effective angle of attack ag is therefore
assumed to be given by

ACL = (CH(ar) — Cpy) < (26)

L=V (1= e\
2 ) B 2
where the function C'§ is the static drag curve, and the constant Cp, is the drag
coefficient at zero lift describing the friction drag. The term C% — Cp, substitutes
the product Cf, 4a? in original Kirchhoff’s expression, and it describes the order
of the pressure drag.

The total unsteady drag coefficient is assumed to be given by

O™ = C%(ap) + ACH! + ACE (27)

where the first term ensures that the unsteady drag is bounded to the static drag
curve C%, and the remaining two terms describe the unsteadiness of the induced
drag and pressure drag, respectively. For steady state conditions (f” — f** and
ap — «a) the unsteady drag coefficient (27) equals the static drag coeflicient
because ACnd — 0 and ACE — 0.

2.3 Moment

The model of the unsteady pitching moment has some similarity with the original
B-L model, where the unsteady TE separation affects the moment through the
travelling of the pressure center due to the separation. However as for the drag, the
present model binds the unsteady moment to variations about the static moment
curve provided as input. The unsteady moment coefficient is approximated by

CWn = C3 (ap) + ACT, — wed/(4U) (28)

where C% is the static moment curve, AC]C,I is the unsteady moment due to the
dynamic TE separation, and the last term is the added mass effect that arises from
the pitch rate of the airfoil. Note that the sign of this term defines the so-called
pitch rate damping, which is important for prediction of classical flutter.

To model the effect of TE separation on the moment it is assumed that there
is a relation between the separation point and the position of the pressure center.
Figure 5 illustrates how the position of an equivalent pressure center can be defined
by the static lift and moment curves as

st
st CM - CMO

Cst (29)
L
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Figure 5. Definition of the distance a* from the quarter-chord to the equivalent
pressure center.

where the constant Cy, is the moment coefficient at zero lift. The arm of the lift
force a® is the distance from the quarter chord point to the equivalent pressure
center where the lift C§' is acting to give the moment C%y — Chy,. Strictly, the
normal coefficient Cy should be used to compute the displacement of the pres-
sure center on the chord, however, the angles of attack where the trailing edge
separation point moves over the airfoil are moderate |a*™| ~ 35°.

The arm a® given by (29) is assumed to be directly related to the separation
point f3¢ given by expression (15). Figure 6 shows how a*® changes with f5¢ for TE
separation on the upper and lower airfoil surface. The airfoil data is the same as
used for Figure 3. It is taken from the aerodynamic input to an aeroelastic wind
turbine code, where accurate description of the pitching moment is not a main
priority, especially for negative angles of attack. This may explain the noticeable
difference between the behavior of the two types of TE separation. For a symmet-
rical airfoil there is no discontinuity of the pressure center position going over the
attached flow region from upper to lower surface TE separation. For cambered
airfoils there may be this difference in arm, where it may be most consistent to
define two functions for at. However, because airfoils on a wind turbine blade
mainly operates at positive angles of attack the function a*® is herein based on a
cubic spline fit to the data for the TE separation on the upper surface only.

From the relation between pressure center and TE separation point, it is as-
sumed that the unsteady moment coefficient due to the dynamic variations of the
separation point can be described as

ACY; = CF™ (a*(f") - @ (£*(ap))) -

where f" is the unsteady position of the separation point, and ngn is the dynamic
lift coefficient given by Equation (22).

0
e@ 0 0 0. 0 o o o o
= ;o°° o°? *Y
k7] )
‘s 005 [
o] 09 % ° o
E °° ° d
o OO
g -0.1 5
% [o]
E [o]
[=%
£ 015
£ [o}
< o Separation on upper surface e
© Separation on lower surface  ©
_02 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1
Separation point, f [-]

Figure 6. Distance of the equivalent pressure center as function of the point of TE
separation on the upper and lower surface of the same airfoil as in Figure 3.
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2.4 Closed set of nonlinear equations

The state-space formulation of the suggested B-L type dynamic stall model is here
summarized by presenting the closed set of coupled equations. These nonlinear
ordinary differential equations (ODEs) will be coupled in aeroelastic models with
the structural equations for the airfoil motion.

Figure 7 illustrates the flow of variables in this coupled aeroelastic system.
Structural and aerodynamic equations of this system must be solved simultane-
ously, however in this presentation the airfoil motion is assumed to be prescribed.
Hence, the geometric angle of attack «, the pitch-rate &, the angle of attack at
the three-quarter point as,,, and the time-varying free-stream velocity U are given
explicit by prescribed structural states.

The differential equations of the dynamic stall model are given by (11), (20),
and (21), which are coupled through different algebraic equations. The coupled
set of nonlinear ODEs can be rewritten as

j:l +T1:1 (b1+CU/(2U2)) I = b1A1T51a3/4

by + T (b2 YU/ U2)) ws = boAsT " ay),
i3+ T, 'wy = T, (CLa(ap —ao) + 7T, ) (31)
T4 + Tf_11‘4 = Tf_lfst (l‘g/CL,a + Oéo)

where the initial conditions are z;(0) = 0. The effective angle of attack apg is
linear dependent on z; and z» as given by (12). Note that the time constant
T, = ¢/(2U(t)) is time-varying due to the dependency on the structural states
through the free-stream velocity U.

The unsteady aerodynamic coefficients are given by

CH" = Cpolag —ao)za + CF(ag) (1 — 24) + 7Ty &

Rt = C¥lar) + (@ —ap) CP" (32)
+ (CBlar) - C,) ( R )

G = Cii(ar) + P (@(z0) — @ (F*(ap)) - 5Tud

where £, Cp,.q, C®, and a** are defined by (15), (16), (18), and (29), respectively.

Equations (31) and (32) form a closed set of coupled nonlinear equations. These
equations govern the unsteady forces on an airfoil, and can directly be used to-
gether with a Blade Element Momentum method in an aeroelastic code for wind
turbines. However as noted by Leishman and Crouse in [15], the system has a ten-
dency to be stiff which complicates a numerical integration. Hence, for nonlinear
time-domain analysis it is still preferable to use the indicial function formulation
of the model as shown in Section 3. The purpose of the state-space formulation is

external inflow .
_ Dynamic stall
a model o
o C,
a, o
U Cy"
U Structural
model | external forces

Figure 7. Schematics of the coupled aeroelastic system showing the variable flow.
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to enable stability analysis; it is therefore shown in the next section how the set
of equations can by linearized for small amplitude vibrations of the airfoil about
a steady-state equilibrium.

2.5 Linearization about a steady state

Wind turbines do not exhibit steady state behavior during operation due to air
turbulence, wind shear, gravitational excitation, tower shadow, and other effects.
However, to give a first order approximation to the dynamic behavior of turbines,
these effects can be neglected by assuming that the turbine is operating in a steady
state equilibrium between aerodynamic and structural forces.

To analyze the stability of this equilibrium, the dynamic stall model is now
linearized assuming small amplitude vibrations about an equilibrium

at) = al + eal(t) , Qgu(t) = a® + ea;/4(t) , U@t) =Uo+ eUs(t) (33)

where the equilibrium is given by the steady angle of attack o and the mean free-
stream velocity Up. The vibrations about this equilibrium state is given by the
perturbations a', o} ,, and Uy, which are small as indicated by the book-keeping
parameter € < 1.

A perturbation solution to the state equations (31) is sought on the form

zi(t) =2 +exj(t) for i=1,2,34 (34)
where z¥ is the steady state and z} is a small perturbation of the dynamic stall

variables. Insertion of (33) and (34) into (31), and evaluation of the e’-order
equations, the steady states become

2 = 41a% 15 =40" 23 =Cr.(a®—ap), 1z%=r"a) (35)
The e'-order equations with substitution of these steady states become
. Aja®
gt Tl = T A el (1) - [1]0 Ui (t)
Aya® .
P+ Ty tal = TylAsal,(t) - 2‘;‘ U (t)
iy + T, vy = T, (Cpaop +nTod (1)) (36)
_y df 3

.1 1,1
Ty + Ty xy = T, e
where two new time constants are introduced as T; = Tp/b; with Ty = ¢/(2Up), and
ap = aj,¢(0) + x] + x5 is the linear effective angle of attack (cf. Equation (12)).
The linearization of the fourth equation is performed by Taylor expanding the
separation point function f5t about the steady angle of attack o, where the
derivative of f5¢ can be derived from expression (15) as

@ 2 <dCit B Cit(a)> (2_ CL,a(a—a0)> (37)

do Crala—ap) \ da a—w Cr(a)

The linear equations (36) are the governing equations for the linearized dynamic
stall model. Solution of these equations for z}(0) = 0 yields the linear approxima-
tions to the aerodynamic states.

To obtain a completely linearized model, the aerodynamic coefficients (32) are
also linearized using Taylor expansion about the steady state equilibrium

Ci* = O} +craap+ayzi+7Th dt(t)
Ol = O+ eapalteay o} + CY (o' (1) — ab) (38)
Ot = 0% +ema o+ ems 7k — 5Ty 6M(1)
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where the coefficients are given by

dcfs
¢a = Crafo+ daL L (1 - fo)
ayp = C’L7a(a0 —ag) — Cﬂs(ao)

_dCp dfs* o1 —VFo
e o N 2y
1-Vfo
c = (C% —0%)—X= 39

Aoy o da®

e do a=al v do a=a’ df a=a0l
dast

O A

and C9, C9%, and CY, are the static lift, drag, and moment coefficients at the
steady state angle of attack a®. The derivative of C® can be derived as

ACY _ (395 — Cp (@) (1 = £(0)) + (Cp = Croa(a = ao)) %
do (1 - fst(a))?

and the derivative of a*' is computed from the cubic spline.

There are some problems with singularities in the linearization for an airfoil
in a fully attached (fo = 1), or fully separated (fo = 0) flow, which must be
considered when computing the coefficients (39). For fo = 1 the derivative of the
lift, coefficient for fully separated flow must be computed as dC% /da = %dCit /da,
where the limit given in Equation (19) has been used. For fo = 0 the coefficients
for the linear drag must computed as ¢4, = dg—aD aeqo and cq ¢y = 0 to avoid
singularities by dividing with zero. The simplification of the first coefficient is
given by the fact that df$'/da = 0 for fo = 0. The second coefficient cq,¢ can
be set to zero because it has no effect on the linear drag when the flow is fully
separated where the perturbed unsteady separation point variable z} will be zero

due to dfs*/da = 0, as seen in Equation (36).

(40)
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3 Indicial formulation

In this section, the differential equations describing the dynamic stall model are
rewritten to an implicit indicial method formulation to facilitate effective numer-
ical solution of the aeroelastic equations in the context of full aeroelastic models.

When the response of a driving force for a linear system, such as the present
dynamic stall model, is sought, Duhamels integral can be employed. A case that is
very numerically efficient occurs when the response of the system can be expressed
in terms of exponential functions, in which case the solution of each of the state-
variables for each time-step is reduced to decaying the value from the previous
time-step and adding a new increment.

To have the same basis of the formulation for the present model in both the state
space and indicial formulations, an indicial formulation of the model equations (31)
is derived below.

3.1 General considerations

The differential equations of the model are linear first order equations
&+ Prp = Q, (41)

where index i describes the number of the equation, and the coefficients P; and
Q; in the general case are time-varying. The solution to this general differential
equation at time t = t, is

te
ilt)) = / Qie P dr 1 it,) (42)
ts
where t, is the initial time. The solution at time ¢ = ¢, + At is

tetAt tet+At
t

s

zi(te + At)

te
_ [tetAt p. _ [te p.
= e fte Pldt/ Qie fi PZdet
t

s

tet At e
+/ Qie™ I Pt 4 (), (43)
t

e

With initial conditions z;(¢s) = 0, Equations (42) and (43) shows that the solution
at the next time step can be written as

xi(te + At) = Cdec,i xi(te) + Inew,i- (44)
where
Cdec,i = e f::+At Pudt (45)
tetAt te+At
Inew,i = / Qie_ fi P det- (46)
te

These time-varying coefficients are the decay (Cgec,;) and the increment (Inew,s)
due to the right-hand side of Equation (41).

3.2 Discretization

Several strategies can be employed when solving the general equations, the most
simple one being the assumption of piecewise constant P; and @Q; values.
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Piecewise constant terms

Under this assumption, the decay and increment reduces to

Cieest = e T (47)
cons Ql —B;
Inew,z = T(]' —€ PlAt)' (48)
(3
The constant values can be approximated using the midpoint values
P/ = 05(PI7" + P (49)
Q = 05@Q™ +@Q) (50)

Note that the superscripts and subscripts on P and () refer to time step index
and state variables, respectively. The coefficients in the expressions above are for
the state variables i = 1 and i = 2 given as

_ U+ Ut Ui+ U7}

Jj o _
o= b T Uiy (51)
. biA; /o o
Qz _ zc i (U]_la?;/zll + U]Oéé/4) (52)
whereas the coefficients for the state variables i = 3 and ¢ = 4 are
P = 1;! (53)
Q) = 05T," [CLﬂ(aZE—l + oy — 200)
T ;.1 1 s .
+5 (@THUT & U7) (54)
Pl = T;! (55)
QF = 0577 [fa(ad " /CLa + a0) + fau(2]/CL o + 0)] (56)

Higher order discretizations

More accurate and elaborate formulas may be derived under the assumptions of
linear or parabolic P; and (); in time. The expressions, however, become very
complex, involving error functions, if P; is not assumed piecewise constant. Under
the assumption of piecewise constant P; combined with linear and parabolic @;
in time, the decay and increments are

lin cons
Cdecg = Cdec,it (57)
i—1
28 = Lra-ersy
Pi
Qf - szil 1 —PiAt
N ol ) (59)
Ched = Cattdt (59)
ar Qg_l —_pJ
Izewc?i = 15]' (1 —e€ F At)
i i |
+% (At ——(1-e" At)) (60)
2ALP; P;
i _90il L i 2A¢ 2 pi
+Q7, Qz — Qz At2 _ ——] + 7(1 _ G_Pi At)
2AEF; Pl Py
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The QZ coefficients in the expressions above are for state variables ¢ = 1 and i = 2
given as

i v’

(3

whereas the QZ coefficients for state variables i = 3 and i = 4 are

. _ . c .
Q = T,° (CL7a(a]E —ap) + 7T2—Uja) (62)
J -1 95%
Qe = T fa Crm + o (63)
As previously, aiﬂ and C’f’j is given by
OéjE = ag/4(1—A1—A2)+${+$% (64)
. . C s
CP? = COpalady —ag) + 7r2—Uja3 (65)

With the above set of equations it is straightforward to compute the decay and
increment of the state variables using equations (47)-(48), (57)-(58) or (59)-(60)
in the constant, linear or parabolic assumption of @Q);, respectively. Once the decay
and increments are found, the state variables are updated using Equation (44), and
the unsteady lift, drag, and moment coefficients are computed using Equation (32)
for the new time step t = /1! = ¢t/ + At.
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4 Examples

In this section the various parts of the proposed dynamic stall model are validated,
and the effect of the model constants are discussed. The first subsection deals
with the nonlinear model, after which the linear model is investigated. The last
subsection deals with the effect of airfoil thickness on attached-flow response.

4.1 Validation of the nonlinear model

The validation of the nonlinear model is split up in two phases. First, the re-
sults obtained with the general unsteady flat-plate inviscid solver described in
Appendix A are compared to the results of the nonlinear model. Secondly, the
properties of the full dynamic stall model is investigated.

Flat-plate solutions, potential flow

To verify the implementation of the incompressible, inviscid part of the dynamic
stall model governed by the first two of the state variables, the model is tested
against results obtained with the algorithm for solving inviscid unsteady flat plate
flows, described in Appendix A.

Figure 8 show the comparison of the responses of unsteady flat plate flows
computed using the general inviscid unsteady flat plate response solver and the
proposed dynamic stall model in the case of harmonic pitching motion, harmonic
translatory heaving motion and harmonic translatory streamwise motion.

Results for both the proposed model, with the simplifications in the virtual
mass terms, and the model using the complete virtual mass terms are shown. The
indicial model including the full virtual mass terms agrees well with the benchmark
results of the general inviscid unsteady flat plate response solver for all types of
motion despite the very violent motion of the airfoil. The small differences are
introduced by the approximation to the flat plate response, cf. Equation 6. More
terms can be used to represent the indicial ¢-function if higher accuracy is required.

The difference between the benchmark results and the results of the proposed
indicial model are due to the missing added mass term proportional to Ua + 711 /o
However, it should be noted that the reduced frequency of 0.2 in these test cases
is high compared to typical values for wind turbine applications. In cases with
moderate motion, the error introduced by the missing added mass terms is sub-
stantially smaller.

Full dynamic stall model

To show the behavior of the full dynamic stall model, the response of a NACA 6315
airfoil undergoing pitching motion is shown in Figure 9. It is seen that the well
known characteristics of dynamic loops are captured with the model. In the linear
region, the effective slope of the lift-loop is reduced, and the direction of the loop is
counterclockwise. The corresponding drag loop is mainly due to the inviscid effect
described in Section 2. The loop on the moment curve is caused by the upwash
velocity, resulting in the effective angle of attack different from the geometrical
one. The lift loop near maximum lift has a very different shape owing to the effects
of separation. It is seen that the lift curve has the expected overshoot, whereas the
drag and moment curves revolve around the static curves. The lift curves for the
stalling cases are both clockwise. For the loop around the highest angle of attack
with large separation, the drag and moment curves lie closer to the static curves
than in the case near maximum lift.
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Figure 8. Inviscid response of Cp, to oscillatory pitch (upper, a = 5° =+ 2° ),
heave (middle, y/c = £0.2 and a = 5° ) and streamwise motion (lower, X =
A, -w/Uy =04 and 0.8; a = 5° ) for a flat plate. Comparison of results obtained
with the general solver described in Appendixz A and the indicial model, using both
proposed and full virtual mass terms. The reduced frequency is k = we/(2Up) = 0.2
for all results shown.
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Figure 9. Response of Cr, (upper), Cp (middle) and Cyr (lower) to oscillatory pitch-
ing motion of a NACA 6315 airfoil. Reduced frequency is k = we/(2Up) = 0.1,
and the amplitude of the pitching oscillations is Aa = 4° .
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4.2 Validation of the linear model

To validate the performance of the linearized model, Figure 10 show a comparison
of the lift, drag and moment responses predicted by the linear and nonlinear
version of the model. The left and right figures show the loops for pitch amplitudes
of Aa = 4° and Aa = 2°, respectively.

It is seen that the difference between the linear and nonlinear models decreases
as the oscillation amplitude decreases. Only slight deviations are present at a
pitch amplitudes of Aa = 2° . For the case of pitch amplitudes of A« 1°,
the responses predicted with the linear and nonlinear models were practically
identical. This means that the linear model can be applied to determine the linear
instabilities of an aeroelastic system [21, 22]. As the motions of the system grows,
the nonlinear effects increases, and the nonlinearities may limit the energy input
into the system, resulting in limit-cycle oscillations.
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Figure 10. Comparison of responses from the linear and nonlinear model. Re-
sponse of Cr, (upper), Cp (middle) and Cy (lower) to oscillatory pitching motion
of a NACA 6315 airfoil. The amplitude of the oscillations is Aa = 4° (left) and
Aa = 2° (right); both with reduced frequency k = we/(2Up) = 0.1.
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4.3 Non-zero airfoil thickness, attached flow

The response of a infinitely thin airfoil to a step change in angle of attack was
solved by Wagner [23] in 1925. However, the response of an airfoil of finite thickness
differs from that of the infinitely thin airfoil [24]. In general the response of non-
zero thickness airfoils are lagging that of the zero thickness airfoils.

Figure 11 show the response of the lift to a step change in angle of attack
for a flat plate and a Risg A1-24 airfoil. The Risg A1-24 airfoil is a 24% thick
airfoil developed specifically for wind turbine applications [25]. The response of
the Risp A1-24 airfoil differs significantly from the flat plate response given by the
expression by Jones [26], which is the most commonly used approximation to the
Wagner function. It is seen from the figure that the response of the thick airfoil is
lagging that of the flat plate. The incompressible panel code results are obtained
with a code developed by Gaunaa [27].

The commonly used two-term exponential approximation to the Wagner func-
tion by Jones approximates the response of the infinitely thin airfoil only, so if
the characteristics of the finite thickness airfoil is to be captured correctly, the
constants of this two-term exponential approximation must be changed. Using
the response of the Risp A1-24 airfoil, an approximate two-term exponential ex-
pression was found by minimizing the RMS value of the difference between the
approximate expression and the panel code. The obtained approximate response
curve is correct to within 1% of the panel code results. The general form of a two-
term exponential expression for the response is given by Equation (6). Table 1
lists the coefficients of the two-term exponential approximations to the flat plate
and Risg A1-24 airfoil responses.

1

0.9

,stal

0.4 = = Jones approximate flat plate []
—— Panel code Risoe A1-24
~ Approximate Risoe A1-24

0.3 L L I
0 5 10 15 20 25 30

T[]

Figure 11. Inviscid response of the lift to a step change in angle of attack for a
flat plate and a Risg A1-24 airfoil. T = 2Upt/c

Ay As by ba
Flat plate (Jones [26]) | 0.165 | 0.335 | 0.0455 | 0.3000
Risp A1-24 airfoil 0.294 | 0.331 | 0.0664 | 0.3266

Table 1. Coefficients for approximate representations of inviscid responses.
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The theory leading to the concept of using the downwash in the 3/4 chord point
is developed for an infinitely thin airfoil. It is therefore not theoretically proven,
that the specific response functions can be employed in the case of airfoils of finite
thickness. However, this method yields results in very good agreement with results
from Navier-Stokes simulations, which in this respect act as benchmark results.
The code used for the Navier-Stokes computations is EllipSys2D, developed by
Sgrensen [28] and Michelsen [29, 30], where the incompressible Reynolds averaged
Navier-Stokes equations are solved for the simple variables u, v and p, using a
block structured finite volume method. The Navier-Stokes results shown in this
work was carried out by F. Bertagnolio from the Wind Energy Department, Risg.

Figure 12 shows the response of a RIS A1-24 airfoil undergoing pitching oscil-
lations. It is seen that the indicial method results based on the original Wagner-
curve approximation by Jones produces results that differs significantly from the
Navier-Stokes simulation, and that the indicial method results based on the spe-
cific response function for the RIS@® A1-24 airfoil is in very good agreement with
the Navier-Stokes results.

This shows that it is indeed plausible to use specific response functions if the
exact dynamic behavior of a finite thickness airfoil is needed. The small difference
between the curves may be explained by viscous effects and the errors introduced
by using an approximation for the response function. The dynamic Navier-Stokes
results includes an offset on the lift coefficient of ACy = —0.016. This value is
chosen such that the mean lift coefficient of the dynamic Navier-Stokes loop is
identical to the steady Navier-Stokes lift coefficient at 4.2° . The reason for the
difference between steady and the mean unsteady Navier-Stokes computations is
of a numerical nature, but should not affect the dynamic features of the loop.
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0.95F b
_ 09r b
A
—
]
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Figure 12. Response from pitching oscillation o = 4.2° + 1.5° with a reduced
frequency k = we/(2Up) = 0.092 for the RISO A1-2) airfoil. Comparison be-
tween results obtained by Navier-Stokes computations and indicial function for-
mulation using both flat-plate and a specific response function corresponding to
the RISO A1-24 airfoil. The dynamic Navier-Stokes results includes a offset of
ACL = —0.016, which accounts for the numerical difference between steady and
unsteady Navier-Stokes computations. The zero-lift angle is ag = —3.16°
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5 Conclusion

A new dynamic stall model of the Beddoes-Leishman type intended for wind tur-
bine aeroelasticity has been proposed. Both state-space and indicial formulations
are given, as well as, a linearised state-space formulation for aeroelastic stability
tools. For wind turbine applications compressibility effects and flow separation
initiated from the leading edge are not dominant phenomena, and therefore ne-
glected in the present model. The model includes the effects of shed vorticity from
the trailing edge (Theodorsen Theory), and the effects of an instationary trailing
edge separation point. As an extension of the original Beddoes-Leishman model,
the present model also includes the effect of the time-varying flow velocity on the
unsteady lift when an airfoil is vibrating in the streamwise direction, e.g. during
stall-induced lead-lag vibrations that can occur for wind turbines.

The only input to the dynamic model is the static lift, drag, and moment curves,
four constants determining the unsteady inviscid response (determining two time-
constants), and two time-constants determining the unsteady viscous effects.

The dynamic model was compared to unsteady inviscid solutions of flat-plate
flows. The comparison of the responses from oscillatory pitching, heaving and
lead-lag motion showed very good agreement between the present model and the
unsteady inviscid solutions. The proposed dynamic model gives results identical
to unsteady inviscid flows within the accuracy of the approximation of the inviscid
response function. In the stall region, the model exhibits the expected dynamic
features, including the well-known overshoot of the lift when undergoing pitching
oscillations near maximum lift.

The response of the full model has been compared to the linear model, where it
was seen that the two models give identical results for small amplitude oscillations.
For pitching amplitudes above Aa = 2° the responses predicted by the full and
linearized model are practically identical. The linear state-space formulation of
the model is used in the aeroelastic stability tool called HAWCStab [21, 22].

Finally, it is shown that the response of airfoils of finite thickness can be repro-
duced to a high accuracy by the use of specific inviscid response functions.
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A Unsteady flat plate flows

This appendix contains a description of an algorithm for solving unsteady invis-
cid flat plate flows. According to Glauert [31], it is possible to compute inviscid
two-dimensional solutions to the flow over an airfoil of infinitesimal thickness by
applying continuous vorticity on the airfoil given by

WEH = Aoft)tan S+ 3 An(t)sinn® (A1)

& = cosO (A.2)

Note that £ is a non-dimensional parameter, describing the position on the chord
and in the wake. £ is zero at mid-chord, minus one and one on the leading edge and
trailing edge, as shown in Figure 13. The induced velocity from the bound vorticity
on the &-axis, which lies on the chordline, is computed from the Biot-Savart law

u(€t) = —/ &) g,

_12m(€ = &)
= —1/240(t) — i 1/2A,,(t) cosn® (A.3)

Similarly, the induced velocity from the wake, which is assumed to extend from
the airfoil in the chordwise direction, is computed from

et = [ g (A9

The velocity through the airfoil line from the free-stream and the relative motion
of the airfoil is

up(&,t) = —g+(V-=2)a+b—a)d (A.5)

Figure 13. Definitions and positive directions used in the derivations of the general
numerical solution. b is the half-chord of the profile, with which the length parame-
ter & is normalized. The direction perpendicular to the profile is denoted by n. The
angle of attack, o, is determined with respect to the free stream velocity V', and
is positive ‘nose up’. The translatory motion of the profile is given by x, y, and
the derivatives of these, which defines the translatory motion of the hinge-point
O, defined by the non dimensional parameter, a, for which the positive direction
s towards the trailing edge.
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The Neumann boundary condition, stating that the flow through the solid surface
be zero, is

un(§:8) + wy(&,1) +ug(,t) = 0 (A-6)

Inserting Equations (A.3)-(A.5) into the Neumann boundary condition, (A.6),
yields

3 R R L(3))
1/24, ;1/2Anc0sn®+/_1 o7 lE, — B d&
— g+ (V—i)a+b—a)ad = 0 (A7)

from which the time dependant coefficients A, (t) are determined

Ay = 2{(V-d)a—gy—bad}+ — / \/— d¢ (A.8)
oo 2T )
A = a2 / (e~ e e (A9)
_ 2 [TE-ve-1
The potential from the bound vorticity on the infinitesimally thick airfoil is
3
o©) = *1/m [ Ao (A11)

and the jump in chordwise velocity over the airfoil is

we(r) = £1/29(§) (A.12)

Plus and minus refers to the upper and lower side of the airfoil, respectively. The
total tangential velocity is

Vi = (V—d4we)? =~ V—-i)?+2(V—i)we (A.13)

Inserting the above in the Bernoulli equation yields for the pressure difference over
the airfoil

o [
Ap = p—pu=p(V- )7+pbat/ d¢. (A.14)
From this the normal force and moment is integrated

3

N = / Ap dz = pb/ {V-2)y+ b / yd¢} dé (A.15)
—1

M= w2 [ a-gapae

—1

= pb? ﬁl(a—f) ((V )7+baat/ df) d¢ (A.16)
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Inserting v from Equation (A.1) and the A,, coefficients from Equations A.8-A.10
yields after considerable reduction [32]

N = 2mpb(V—2)[(V—12)a—g—bla—0.5)d]

+pb(V / \/_

+7pb? [(V — &)& — fa — §f — abdi] (A.17)
M = (a+0.5)b{27pb(V—2)[(V—i)a —y — bla — 0.5)d]

+pb(V / \/_ €} — 0.5mpb*(V — &)dv

+mpbPa[(V — &)d — Fa — §j — abd] — 1/8mpb*é (A.18)

A tangential force arises due to the singularity at the leading edge of the airfoil.
This is clearly not physical, but it can be considered the limit of the physical
situation when the leading edge radius approaches zero. The tangential force can
be expressed as [33]

T = —mpb ((V T)a — g — aba + —/ \/_ ) (A.19)

The lift and drag coefficients are defined as being perpendicular and parallel to
the direction of the free stream velocity, and are determined from a projection of
the normal and tangential forces on these directions

L = Ncosa—Tsina (A.20)
D = Nsina+Tcosa (A.21)

To determine the wake vorticity, Kelvin’s theorem, which states that the total
circulation around a closed curve consisting of the same fluid particles is constant,
is used. As a consequence of this, the circulation on the profile must be matched
by the opposite amount of circulation shed into the flow

1 00
r = b/ 7d§:—b/ v d&. (A.22)
-1 1
From integration of the bound vorticity, Equation (A.1), we get
1
r = b/ v d¢é =br(Ap +0.54,) (A.23)
-1

Inserting Ag and A; from Equations (A.8) and (A.9), and using the result from
Kelvin’s Theorem, Equation (A.22), the following relation is obtained

T_eHl

1 /-1

The above equation can be used to compute the strength of the shed wake vorticity
using a numerical approach. The integral in Equation (A.24) can be written as a

sum of integrals if the entire wake vorticity from the start of the flow is within the
&-range covered by the sum

oo Eit1
1 ijl Z/ “1 5 dé (A.25)

Under the assumption of piecewise constant wake strengths, this can be written

as
§it1 €+ 1 N1 vl + \/(f?+1 - 1)
i = 3 11 A
7/ P PR e G 0
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Combining Equations (A.24) and (A.26) it is possible to compute the strength of
the newly shed wake

27 [(V = &) —  — bla — 0.5)d] + X5 i ln (%)
mo o= - :
In(é + /& - 1)

(A.27)

Using Equation (A.27) each time step allows for evaluation of the history of the
unsteady wake vorticity, when the dimensionless distances are updated accordingly

_ _ 1A
Eip1 = |1 fﬁLe“b“”' ! (A.28)

From the derivation above it is seen that it is possible to determine the forces
at any time for any motion of the airfoil by computing the wake strengths using
Equations (A.27) and (A.28), and from these compute the forces from the flow
using Equations (A.17), (A.18), (A.19), (A.20) and (A.21).

A.1 Verification of the algorithm

To verify that the general numerical solver works as intended, it is compared to
analytical and numerical solutions of unsteady incompressible inviscid flat-plate
flows. The analytical solutions consist of two well-known solutions, namely an
infinitely thin airfoil undergoing impulsive motion, and Theodorsen’s solution for
oscillating motions of the flat plate for pitching and heaving motions. The response
to translatory motion of the flat plate in the free-stream direction is validated using
the results from the numerical work of van der Wall and Leishman [19].

Impulsive motion

The response of an impulsively started infinitely thin airfoil was solved by Wagner
[23] in 1925. The lift coefficient due to circulation on a strip of unit span as a
function of time is

L .
CL = m =27 sm(a)@(’r), (A29)
where the nondimensional time, 7, is defined as
20t
T = )
c

The exact form of the function, ®(7), in Equation (A.29) cannot be expressed in
analytical terms, but several approximate expressions have been proposed. The
most widely used approximate expression, given by R.T. Jones [26] is

B(r) = 1-0.165e70047 _ (.335¢70-3007 (A.30)

In Figure 14, it is seen that the approximate expression lies very close to (within
1% of) the general flow solution, indicating that the general flow solution obtains
correct results.

Oscillating motion

The analytic solution to the forces from an infinitely thin airfoil undergoing har-
monic oscillations in angle of attack and heaving motion was first solved analyt-
ically by Theodorsen [3] in 1935. Figure 15 show the lift, drag and moment coef-
ficients for the pitching case compared to the results from the present method. It
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Figure 14. Inviscid response of the lift to a impulsively started flow for a flat plate.
Comparison of the approzimate expression of Jones [26], Equation (A.30), and the
general algorithm.

is seen that the post-transient solution by the general algorithm is in very good
agreement with the analytical solution.

To make sure the influence of translatory motion is implemented correctly, Fig-
ure 16 show a comparison of the responses of a flat plate to oscillating heaving
motion obtained from Theodorsens analytical solution and the present method.
As in the previous case, the post-transient agreement is very good.

Since no analytical solution to the problem of a flat plate undergoing harmonic
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Figure 15. Inviscid response of the lift to oscillating pitching motion for a flat plate;
comparison of the analytical expressions by Theodorsen with the general algorithm.
Reduced frequency is k = we/(2Up) = 0.3. Angle of attack is o = 5° £ 1.5° , with
1/4 chord as azis of rotation. The left, middle and right graphs show Cr,, Cp and
Cr, respectively.
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Figure 16. Inviscid response of the lift to oscillating heaving motion for a flat plate;
comparison of the analytical expressions by Theodorsen with the general algorithm.
The reduced frequency is k = we/(2Uy) = 0.2. The left, middle and right graphs

show Cr,, Cp and Cypy, respectively.
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Figure 17. Inviscid response of the lift to oscillating motion in the streamwise
direction for a flat plate; comparison of the numerical work of van der Wall and
Leishmann [19] (left graph, reproduced from [19]) with the general algorithm (right
graph). The reduced frequency is k = wc/(2Up) = 0.2, and the harmonic motion
in the streamwise direction corresponds to maximum translatory velocity V .

translatory motion in the direction of the free-stream is known to the authors, a
comparison with the numerical work of van der Wall and Leishmann [19] is shown
in Figure 17.

It is observed that the results of the present algorithm agrees very well with the
results of van der Wall and Leishman, thereby concluding the successful verifica-
tion of the general numerical solution methodology to unsteady inviscid flat plate
flows proposed here.
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