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Full system scramjet simulation

By R. Pečnik, V. E. Terrapon, F. Ham AND G. Iaccarino

1. Motivation and objectives

The development of computational tools that can faithfully reproduce high-Mach num-
ber flight conditions is fundamental to improve our ability to realize hypersonic vehicles,
especially because physical prototyping is challenging and extremely expensive. Of spe-
cial consideration in the development of hypersonic vehicles is the accurate evaluation of
the safety and operability margins associated with specific design solutions, because of
the relatively limited experience with sustained hypersonic flight.

The theoretical performance advantage of scramjets over rockets in hypersonic flight
has been well known since the 1950s. For this reason, significant scramjet research has
been conducted in many parts of the world. Mainly, three different experimental ap-
proaches have been followed to gain experience and physical insight into scramjet propul-
sion systems: ground testing in continuous flow facilities for Mach<7, high enthalpy shock
tunnels with flow durations of the order of 1–10 ms for Mach>7 and more realistic ballis-
tic reentry vehicle experiments. A typical example for such a reentry vehicle is the Hyshot
flight project devised by the University of Queensland (Smart et al. 2006). Postflight data
analysis confirmed the presence of supersonic combustion during an approximately 3 s
test window at altitudes of 35–29 km. However, due to a radar tracking failure the exact
trajectory is not known. To obtain a more comprehensive data set, a ground-based exper-
iment with a 1:1 model for the presumed same conditions as for the flight experiment was
conducted by the German Aerospace Center (DLR) in the high enthalpy shock tunnel
(Gardner et al. 2004). However, to further complement the data, numerical simulations
are necessary to gain physical insight in the physics of scramjet engines.

With this objective, we developed a computational infrastructure to solve the Reynolds-
averaged Navier-Stokes equations to perform detailed simulations of high-speed vehicles.

The present paper is organized in the following way:
1. Description of the developed Reynolds-averaged Navier-Stokes solver
2. Two-dimensional scramjet simulations to validate the code and to investigate

the influence of different equations of state models as well as different turbulence
models

3. Application of the code to simulate the full-system 3D scramjet configuration
of Hyshot II scramjet.

2. Reynolds-averaged Navier-Stokes solver

A parallel solver for the solution of the compressible Navier-Stokes equations on un-
structured meshes has been developed based on a finite volume formulation and implicit
time-integration on arbitrary polyhedral meshes. The governing equations are written in
conservative form as

∂

∂t

∫

Ω

UdΩ +

∫

∂Ω

[F (U) − Fv (U)] dA = 0 , (2.1)
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where U = U(x, t) is the state variable, F(U) and Fv(U) are the convective and viscous
fluxes, respectively, and Ω and ∂Ω are the physical domain of interest and its boundary.

In particular, we consider

U = [ρ, ρv, E]T (2.2)

F(U) = [n · ρv, v (n · ρv) +pn, (E + p) (v · n)]T

F(U)v = [0, n · Π, v · (n · Π) + n · Q]T ,

where ρ, v, p, E, Π, Q, n represent density, Cartesian velocity vector, pressure, total
energy, stress tensor, heat flux vector and outward pointing unit vector normal to the
surface, respectively. The discretization scheme is based on a finite volume formulation
and implicit time-integration on arbitrary polyhedral mesh elements. The code is entirely
written in C++ and uses subdomain decomposition and the message passing interface
(MPI) as the parallel infrastructure.

The flow quantities are stored in the cell centers and the governing equations are
integrated in conservative form:

∂U

∂t
= −R (U) , (2.3)

with

R (U) =
1

V

∑

f

[F (U) − Fv (U)]Af . (2.4)

2.1. Convective fluxes

In the past three decades, many different approaches have been introduced to evaluate the
convective fluxes; Druguet et al. (2005) provides a comprehensive comparison of various
methods.

In the present solver we implemented the Roe (1981), the HLLC and the HLLE (Toro
1999) scheme.

The inviscid flux in 1-D can be linearized as

F (U) = A (U)Ux. (2.5)

The Jacobian A (U) was replaced by Roe with a constant matrix Ã = Ã
(
UL,UR

)
,

where UL and UR are the flow states at the two sides of a cell face. This results in
a linear system with constant coefficients that retains the initial states of the exact
Riemann problem. The derivation of Ã is carried out enforcing several constraints: real
eigenvalues (hyperbolicity), consistency with the original Jacobian and conservation of
fluid properties across the shock; the details are not reported here but can be found in
several textbooks, e.g., Toro (1999).

Due to the linearization of the system the resulting discretization is not positively
preserving (Einfeldt et al. 1991): density and pressure can become negative within the
Riemann problem evolution. Although this inconsistency is severe only in near-vacuum
conditions, or when strong shocks occur, positivity might also be important in simulations
where initial transients may lead to low values of pressure or density.

Furthermore, approximate Riemann solvers obtain all wavespeeds (eigenvalues of the
Jacobian matrix) from an arithmetic or a square-root average of the left and right states
(as for the Roe scheme). This procedure leads to an underestimation of the expansion-
wave velocity, the so-called expansion shock. Another important limitation of these
schemes is the so-called carbuncle phenomenon observed, for example, at the stagna-
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Figure 1. Schematic of an unstructured grid with the location of the variables.

tion region of blunt bodies in hypersonic flows. In this region the convective velocity is
relatively small compared to the sound speed and errors are trapped and deteriorate the
solution accuracy (Candler et al. 2007; Quirk 1994).

Different solutions have been proposed in the literature and can be separated into two
families: eigenvalue limiting methods and hybrid approaches, given in (van Leer et al.

1989; Sanders et al. 1998; Nompelis et al. 2005; Nishikawa & Kitamura 2008).
The approximate Riemann solver used in the present context is the HLLC scheme

proposed by Toro et al. (1994) and Batten et al. (1997). In this method the entropy
condition is enforced (no entropy violating discontinuous waves, called rarefaction shocks)
and the scheme preserves positivity without the need for additional corrections.

The convective flux is evaluated as

FHLLC =







F (Ul) if SL > 0
F (Ul) + SL (U∗

l − Ul) if SL ≤ 0 < SM

F (Ur) + SR (U∗

r − Ur) if SM ≤ 0 ≤ SR

F (Ur) if SR < 0

. (2.6)

The wavespeeds SL and SR correspond to the left and the right acoustic waves, whereas
SM is related to the intermediate contact/shear characteristic. If the flow is supersonic
from left to right, the acoustic wavespeed is SL > 0.0 and the flux has contribution
from the left state only; conversely, the flux is evaluated from the right state in the case
of SR < 0. In subsonic conditions the flux evaluation is further subdivided to ensure
accuracy at the contact surfaces, where U∗

l and U∗

r are the corresponding states. A
detailed description of the scheme can be found in Batten et al. (1997).

2.2. Higher-order reconstruction and slope limiting

The convective flux evaluation illustrated in the previous section leads to a first-order
accurate scheme. Second-order accuracy is typically achieved by computing the states
at each side of a given cell face using second-order interpolation and then applying the
same flux evaluation scheme to the reconstructed states. On an unstructured grid the
reconstruction is formulated as

φL
f = φP + ψP ∇φ|P · rf , (2.7)

where ∇φ|P is a discrete approximation of the gradient at P , computed using standard
least squares approximation or the Gauss theorem, ψP is the slope-limiter function and
rf is the vector connecting P and the center of one face as illustrated in Figure 1. Across
a discontinuity and, in general, in regions where the solution changes rapidly, the slope-
limiter function ψP reduces the discrete gradient such that the reconstructed value at the
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face center maintains monotonicity. In Berger et al. (2005) slope limiters are reviewed as
well as issues that can arise on unstructured grids.

Two different slope-limiter approaches are implemented in the current flow solver, the
solution-dependent weighted least squares method, based on Mandal & Subramanian
(2008) and Pečnik et al. (2008) and a modified version of the limiter proposed by Barth
& Jespersen (1989) and Venkatakrishnan (1995). The second approach is used in the
current paper and will be discussed hereafter.

We explored the limiter procedure proposed by Barth & Jespersen (1989) in the frame-
work of unstructured finite-volume schemes. The limiter is computed as follows:

ψf =







ψ
(

δ+

δ−

)

, with δ+ = φmax − φP if φf > φP ,

ψ
(

δ+

δ−

)

, with δ+ = φmin − φP if φf < φP ,

1 if φf = φP ,

(2.8)

where δ− = φf −φP and φmax and φmin are the maximum, respectively, and the minimum
values of φP and all neighboring cell centroids. The limiter function is defined as

ψ

(
δ+
δ−

)

= min

(

1,
δ+
δ−

)

. (2.9)

The final limiter value ψP in Eq. (2.7) is obtained by taking the minimum of all face
values ψf enclosing the cell centroid P .

Venkatakrishnan (1995) addressed the problem obtaining convergence to steady state
using the limiter given in Eq. (2.9). The scheme forms a gradient and limits it by im-
posing monotonicity conditions in the reconstruction stage across a shock. It is shown
that this scheme produces steady-state solutions that are monotone and free of oscilla-
tions. However, the residual convergence typically stalls after a few orders of magnitude
in particular when nondifferentiable functions such as max or min are used. Therefore
Venkatakrishnan (1995) proposed a modification to the limiter in order to achieve resid-
ual convergence to machine precision. The min function in Eq. (2.9) has been replaced
by a differentiable function

ψ

(
δ+
δ−

)

=
δ2+ + 2δ+δ− + ε2

δ2+ + δ+δ− + 2δ2
−

+ ε2
. (2.10)

The parameter ε2 has been introduced to avoid division by zero in regions where φ ≈
constant and is taken to be ε2 = (K∆x)3, with K a user-specified constant and ∆x a
characteristic length representing the local mesh size (Venkatakrishnan 1995).

Revisiting Eq. (2.10) and the definition of ε one can see that, in order to achieve unit
consistency, the user-specified constant K bears the units from the mesh size and the
limiting variable φ, which makes this approach less favorable as mesh independency is
introduced.

To achieve unit consistency we propose a different definition, with

ε = Kφref , (2.11)

where φref represents a strictly positive field of the same units as φ, e.g., for limiting the
slope of the velocity across a shock we take φref to be the speed of sound. The constant
K defines the amount of φref to be taken. A value of zero implies that the limiter is
active even in near-constant regions, whereas a very high value for K implies no limiting
at all. The limiter is expected to ameliorate convergence, however, depending on the
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Figure 2. Residual of energy for an
inviscid Mach 5 cylinder flow.

1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

d
en

si
ty

ρ

X

Figure 3. Contact discontinuity and shock
wave for Sod’s shock tube problem; dashed
line: exact solution, thick line: K = 0.001,
thin line: K = 0.01.

value of K. Figure 2 illustrates the influence of K on the convergence and monotonicity
of the solution. With K = 0.001 the convergence stalls after two orders of magnitude,
whereas the simulation for the inviscid Mach = 5 cylinder with K = 0.01 converges to
machine precision. On the other hand, a low value of K = 0.001 enforces monotonicity,
while a higher value leads to a slight under-shoot of density at the contact discontinuity
at X = 2, (Figure 3). At the shock wave both solutions are monotonic.

2.3. Viscous fluxes

The viscous fluxes contain second derivatives of the velocity u and the enthalpy h. There-
fore, gradients at the cell face need to be calculated in an efficient and accurate way.
Consider the scalar quantity φ, whose gradient at the cell face is ∇φ. We approximate
the normal gradient at the face as

∇φ|f · nf =
φnbr − φP

|xnbr − xP |
αf +

1

2
(∇φ|P + ∇φ|nbr) · (nf − αfsf) , (2.12)

where the subscript f indicates the face with the adjacent control volumes P and its
neighbor nbr (Ham & Iaccarino 2004). The vector n is the face normal and s is the
normalized vector connecting the cell centroid across the face f . The gradients ∇φ at
the cell centers are computed using the Green-Gauss theorem and α is chosen to be the
dot product α = s · n.

2.4. Implicit pseudo-time integration to steady state

The discretization of the spatial terms in the Navier-Stokes equations results in a large
coupled set of ordinary differential equations of the form given in Eq. (2.3). An implicit
scheme is obtained by evaluating the spatial residual terms at the new time level n+ 1.
Since these quantities are not known explicitly, a linearization must be performed about
the current time level leading to (Mavriplis 1997):

(
I

∆t
+
∂R

∂U

)

∆U = −R (Un) . (2.13)
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A Taylor expansion is used to formulate the Jacobian matrices for the inviscid and
viscous fluxes:

Fn+1 ≈ Fn +
∂F

∂U

∣
∣
∣
∣

n

δU +O (δU)2 . (2.14)

The implicit form of the HLLC scheme is based on the decomposition of the wavespeeds
reported in Eq. (2.6):

Fn+1
HLLC =







Fn
l + ∂Fl

∂Ul
δUl

Fn
l + Sn

L (U∗n
l − Un

l ) +
[

∂Fl

∂Ul
+ Sn

L

(
∂U

∗

l

∂Ul
− I

)]

δUl + Sn
L

∂U
∗

l

∂Ur
δUr

Fn
r + Sn

R (U∗n
r − Un

r ) +
[

∂F
n
r

∂Ur
+ Sn

R

(
∂U

∗

r

∂Ur
− I

)]

δUr + Sn
R

∂U
∗

r

∂Ul
δUl

Fn
r + ∂Fr

∂Ur
δUr

,

(2.15)
with the Jacobian matrix ∂F/∂U and the matrix ∂U∗/∂U, which are given in Batten
et al. (1997).

The viscous flux is linearized as

Fn+1
v = Fn

v +
∂Fv

∂Ul

δUl +
∂Fv

∂Ur

δUr (2.16)

with
∂Fv (U)

∂U
= Av =

∂Fv (Q)

∂Q

∂Q

∂U
, (2.17)

and with Q = [u v w T ]
T

and ∂Q/∂U based on Pulliam & Steger (1982).
The resulting large sparse system (the Jacobian matrices are obtained using first-order

discretization) is solved with the generalized minimal residual method (GMRES) using
the freely available linear solver package PETSc (Satish et al. 2001).

2.5. Transport scalar solver for the turbulence and combustion model

The scalar transport equations for the turbulence and combustion models are solved
segregated after each pseudo time step for the Navier-Stokes equations. In order to solve
the scalars in a fast and accurate way, two particular properties need to be ensured:

• consistent inviscid flux evaluations for the scalar and the Navier-Stokes equa-
tions; e.g., the mass flux computed with the HLLC approximate Riemann solver
is stored and used to compute the scalar advective term and

• no temporal and spatial change for a pure advected scalar, e.g., viscous and
source terms are zero, even during the transient phase towards steady state.

The transport equation for a generic scalar φ can be written in conservative form as

∂

∂t

∫

Ω

(ρφ) dΩ +

∫

∂Ω

[φ (n · ρv) − Fv (φ)] dA =

∫

Ω

S (φ) dΩ , (2.18)

where Fv is the viscous flux and S (φ) is the scalar source term. The transient term on
the left hand side can by expressed as

∂

∂t

∫

Ω

(ρφ) dΩ = ρ
∂

∂t

∫

Ω

φ dΩ

︸ ︷︷ ︸

≡0

+φ
∂

∂t

∫

Ω

ρ dΩ . (2.19)

As we are seeking the steady-state solution the term ∂
∂t

∫

Ω
φ dΩ is taken to be zero. Using

the conservation of mass from Eq. (2.1) and Eq. (2.2), the second term can be expressed



Full system scramjet simulation 39

as
∂

∂t

∫

Ω

ρ dΩ = −

∫

∂Ω

(n · ρv) dA. (2.20)

Substituting the continuity equation in Eq. (2.18) we finally get the scalar transport
equation for steady-state simulations:

∫

∂Ω

[φ (n · ρv) − Fv (φ)] dA− φ

∫

∂Ω

(n · ρv) dA =

∫

Ω

S (φ) dΩ , (2.21)

and in discrete form
∑

f

[
φfmf − Fvf

(φ)
]
− φP

∑

f

mf = S (φ) V , (2.22)

where mf corresponds to the mass flux (n · ρv) dA, computed with the HLLC approxi-
mate Riemann solver for the mass conservation equation. Once the Navier-Stokes equa-
tions reach steady state, the second term on the lefthand side of Eq. (2.22) becomes zero.
However, during the transient phase this term is correcting for the non-converged mass
conservation while iterating the Navier-Stokes equations. The scalar transport equations
are solved implicitly using a biconjugate gradient stabilized method (BCGStab).

2.6. Implemented turbulence and combustion models

Currently two different turbulence models are implemented: the one-equation eddy vis-
cosity model of Spalart & Allmaras (1994) and the two-equation turbulence model of
Menter (1994). The implemented combustion model is based on the flamelet progress
variable approach (FPVA) introduced by Pierce & Moin (2004), and more details of
the implementation can be found in Terrapon et al. (2009). In the current work only
non-reacting simulations are reported, although different models for the gas properties
were used, e.g., an ideal gas law and a calorically imperfect gas model using the NASA
polynomials to compute the heat capacity at constant pressure cp and enthalpy h.

3. Hyshot II ground experiment

The ground-based experiment in the High Enthalpy Shock Tunnel (HEG) at the Ger-
man Aerospace Center (DLR) of a 1:1 model of the HyShot II vehicle (Gardner et al.

2004; Karl et al. 2008) is investigated in this study. This ground-based experiment pro-
vides a more comprehensive data set and better-defined boundary conditions than the
original HyShot II scramjet flight experiment. The experiment provides pressure and heat
transfer measurements for fuel on conditions along the symmetry line of the wedge intake
and the combustor top and bottom wall. Only pressure measurements are reported for
the fuel off condition along the combustor walls.

The overall Hyshot II scramjet geometry is given in Figure 4 and 5, where the flow path
is from left to right. It consists of a wedge intake and a combustor with constant area
terminated by an exhaust nozzle. A bleed channel is located just before the entrance
of the combustor to swallow the shock induced by the leading edge of the combustor
top wall. Cut A-A shows the combustor top view with the four porthole injectors and
the blunt combustor side walls. As no detailed information of the side wall geometry is
available at present, we assumed the leading edge to be planar shaped with a thickness
of 0.4 mm (the same thickness as the leading edges of top and bottom combustor walls).
The free stream inflow conditions are given in Karl et al. (2008) and are summarized in
Table 1.
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Figure 4. Details of the Hyshot II geometry.

Mach number 7.4
Static pressure 1813 [Pa]

Temperature 242 [K]
Density 0.02596 [kg/m3]

Flow velocity 2313 [m/s]
Angle of attack -3.6 [deg]

Table 1. Free stream boundary conditions for Hyshot II

4. Results

Figure 5 shows the CFD flow visualization of the full-system scramjet engine Hyshot II
simulation. The combustion chamber on top corresponds to fuel off condition, where one
can clearly see the diamond-shaped shock structure emanating from the blunt leading
edge of the side walls. The bottom combustor corresponds to fuel on condition with the
characteristic bow shock structure in front of the hydrogen port hole injectors. More
details of the reacting combustor flow simulations are given in Terrapon et al. (2009).

4.1. 2D simulations

In order to reduce computational cost for the investigation of different gas and turbu-
lence models only 2D end-to-end scramjet simulations were performed at first. A mesh
independent study was performed with three different resolutions in wall-normal and
streamwise directions of the combustor. The simulations reached grid convergence for a
grid with 120 cells in wall-normal and 800 cells in streamwise direction for the combustor,
which led to a total cell count of 160000 for the 2D end-to-end simulation. The mesh
close to the walls was clustered to ensure a y+ value around unity at the first wall cell,
and all 2D results reported hereafter were obtained with this computational grid.

Figure 6 shows a code-to-code validation for the pressure, temperature and velocity
combustor inlet profiles. The profiles were extracted at x = 355 mm (see Figure 4),
shortly downstream of the leading edge of the bottom combustor wall. The discontinuity
of the pressure at y = 0.1235 clearly indicates the oblique shock caused by this leading



Full system scramjet simulation 41

Figure 5. Geometry and CFD flow visualization of the scramjet engine showing the wedge
intake (front) and combustor with fuel off (top) and fuel on conditions (bottom), respectively.
The contour plots show the square root of pressure.

edge. The influence of different gas models reflects on the shock location and the over-
all temperature level at the considered location, where the calorically perfect gas gives
a higher temperature level and a higher shock angle. The results with the calorically
imperfect gas agree well with the DLR Tau simulation reported in Karl et al. (2008).

The pressure distribution along the combustor bottom wall is reported in Figure 7.
Again two simulations with different gas models were carried out (Figure 7 (a)) in order
to study their influence on the combustor flow field. Interestingly, the simulation with
constant gas properties shows one more reflected shock along the combustor than the
DLR experiment and the calorically imperfect gas simulation. This discrepancy can be
explained by the difference of the heat capacity ratio γ between these two simulations.
The simulation with variable properties gives a value of γ ≈ 1.32 at a temperature of
T = 1300K inside the combustor, which therefore leads to a higher Mach number with a
wider shock train (see also Figure 8). Figure 7 (b) shows the results obtained with different
turbulence models. There is only a slight difference in the pressure distribution at the
end of the combustor, where the Menter SST model agrees better with the experimental
values.

4.2. 3D simulations

The 3D simulation includes the blunt combustor side walls given in Figure 4. In order
to decrease the computational domain, only the combustor was modeled, including the
leading edges of the bottom and the side wall and symmetry was assumed in the spanwise
half plane. The inlet profiles were extracted from the 2D simulation and then interpolated
as a Dirichlet boundary condition to the 3D computational domain. Eighty cells were
used in spanwise direction, clustered towards the side wall to ensure the same y+ values
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Figure 6. Combustor inlet profiles at x = 355 mm for pressure, temperature and velocity.
Symbols: DLR Tau simulations from Karl et al. (2008); dashed line: calorically perfect gas; solid
line: calorically imperfect gas; both simulations were performed with the Spalart and Allmaras
turbulence model.
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(a) Calorically perfect gas (dashed line)
and calorically imperfect gas (solid line),
turbulence model: Spalart and Allmaras
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Figure 7. Normalized pressure distribution along bottom wall for fuel off condition using differ-
ent models for gas properties and turbulence. Symbols with error bars correspond to the DLR
measurements. Pressure is normalized by pt2 = 1.3e5 taken from Karl et al. (2008).

as for the top and bottom walls. The overall computational domain consists of 9M cells.
The simulation was performed with the calorically imperfect gas model and the Spalart
and Allmaras turbulence model.

Figure 8 shows the velocity divergence for the two channel midplanes to visualize the
complex shock structure in the unfueled combustor. Three shock systems with the same
shock angle occur: the shock train induced by the leading edge of the bottom wall and
two shock trains emanating from the blunt side walls. These shocks intersect at two
positions along the center plane and alter the pressure distributions, as can be seen in
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Figure 8. Flow visualization at the combustor channel center planes using the
velocity divergence.
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(a) Pressure distribution along bottom wall for
fuel off condition using different geometrical
fidelities. Solid line: 3D with blunt combustor
side walls; dashed line: 2D simulation. Symbols
with error bars are DLR experiment.
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Figure 9. Normalized pressure distribution and code scaling for the 3D scramjet simulation.

Figure 9 (a). The agreement between simulation and experiment improves remarkably in
the rear part of the combustor as the effect of the side walls is taken into account.

It is important to note that the 3D simulation is a preliminary attempt to investigate
3D effects as the shape of the side wall was not exactly known from the experimental
setup. Furthermore, note that the multiple shock intersection at the center plane only
occurs for zero yaw angle. A small change in yaw angle would generate a slip surface at
the first intersection of the side wall shocks and further complicate the flow field within
the combustor.

Figure 9 (b) summarizes the code scaling study done at the Lawrence Livermore open
computing facility Hera, showing linear scalability up to 600 CPU cores (15000 cells per
core) for the present 3D simulation.

5. Conclusion and future work

A fully implicit parallel Reynolds-averaged Navier-Stokes solver based on a finite vol-
ume formulation on arbitrary polyhedral mesh elements has been developed during the
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past two years. Currently, the code contains two different eddy viscosity turbulence mod-
els and a combustion model based on the flamelet progress variable approach. The code
is entirely written in C++ and uses subdomain decomposition and MPI as the parallel
infrastructure.

The code was applied to simulate the Hyshot II scramjet engine to assess the validity of
the different models. It was shown that for the high temperature present in a scramjet the
use of a calorically imperfect gas model is important and that the turbulence model has
only a small impact on the flow solution. To assess the influence of different geometrical
fidelities, a 3D simulation of the combustor with side walls was performed, where further
improvement of the predictive capability was gained.

The next steps will be to extend the Navier-Stokes solver for unsteady flow simula-
tions and then to perform simulations to investigate the unstart process due to thermal
chocking in the combustor of the same scramjet configuration Hyshot II.
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