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99{1394INTEGRATED SIMULATION MODEL FOR PRELIMINARY AERODYNAMIC,STRUCTURAL, AND CONTROL-LAW DESIGN OF AIRCRAFTMark Drela �MIT Department of Aeronautics and AstronauticsCambridge, MA 02139AbstractAn integrated model is developed for aerodynamic,structural, and control simulation of 
exible aircraftin extreme 
ight situations. The structure consists ofjoined nonlinear beams allowing arbitrarily large de-formations. The aerodynamic model is a compressiblevortex/source-lattice with wind-aligned trailing vor-ticity. Full unsteady terms with 
ight dynamics areincluded. Model forcing is via gusts or control inputs.The overall nonlinear equation set is solved by a fullNewton method. The Newton Jacobian matrix is alsoused for frequency-domain computations to investigate
ight stability, control-response behavior, and 
utter.Nonlinear performance of control laws can be exam-ined.The numerical problem is small enough for inter-active computation, allowing rapid diagnosis of localaerodynamic stall, structural failure, or control systemsaturation for a wide range of 
ight conditions. Theoverall approach allows quick generation of a robustmulti-disciplinary preliminary design which can serveas a good basis for subsequent detailed design.NomenclatureCoordinates and dimensionsX;Y; Z inertial (absolute) earth coordinatesx; y; z aircraft body coordinatesc; s; n local coordinates �xed to beam sectionccg, ncg c; n locations of mass centroidcta, nta c; n locations of tension axis�c local wing chord�xo location of s axis from leading edgeR local slender-body radius` streamwise distancet time��T axis transformation tensori node index along beam; p�1� spanwise Glauert coordinate�Associate Professor, AIAA Associate FellowCopyright c
1999 by the American Institute of Aeronauticsand Astronautics, Inc. All rights reserved.

Structural variables and parameters~r, ~u, ~! beam-section location, velocity, rotation~v, ~a beam-section absolute velocity, acceleration', #,  beam-section orientation Euler angles in ~�~F ; ~M beam-stress force, moment resultants�s beam-axis extensional strain�c,�s,�n beam-axis c; s; n curvaturesEA beam extensional sti�nessEIcc . . . beam bending sti�ness matrix components��K curvature/angle-rate relation tensor� section mass/length density��� section c; s; n inertia/length tensor~g gravitational accelerationAerodynamic variables and parameters�A 2-D airfoil lift-curve interceptdc`=d� 2-D airfoil lift-curve slopecdf , cdp 2-D section friction, pressure drag coe�s.cm 2-D section pitching moment coe�cientdc`=d�F 2-D section 
ap lift derivativedcm=d�F 2-D section 
ap moment derivative�F1 , �F2 . . . control de
ectionsAk circulation Fourier mode coe�cients~Vind local induced velocityV1, �, � freestream speed and 
ow angles~wk, ~w1 induced-velocity in
uence functions� air density� bound circulation� Prandtl-Glauert factor = 1=p1�M21Global variables and operating parameters~R, ~U , ~
 aircraft absolute position, velocity, rotation�, �, 	 aircraft orientation Euler angles in ~�IntroductionAircraft design is inherently a multi-disciplinarytask, where aerodynamic, structural, and control sys-tem designs must be integrated and any con
icts re-solved. Although making the tradeo�s between aero-dynamic performance and structural weight (e.g. opti-mum aspect ratio) is relatively straightforward in thestatic case, the possibility of 
utter or unfavorable cou-1American Institute of Aeronautics and Astronautics



pling between structural modes and the control lawsgreatly complicates this problem.Current aircraft dynamics analysis systems, suchas NASTRAN,1 are typically assembled from sepa-rate general-purpose structural and aerodynamic anal-yses, coupled through interpolated in
uence matrices.To get a managable problem size, 
utter or forced-response analyses are performed via a modal approach,using the lowest structural modes as a solution basis.This technique is general and powerful, but its gener-ality carries a price | signi�cant e�ort is needed togenerate and analyze a case. The reliance on in
uencematrices makes analysis of large-de
ection nonlinearproblems especially awkward. These di�culties signif-icantly hamper preliminary design studies, where it isadvantageous to consider as many candidate designsand operating conditions as possible.The alternative approach presented here simpli�esthe overall aircraft system description to the great-est extent possible, while still capturing the relevantphysics. Johnson2 and Minguet3 have done relatedwork for helicopter rotors, which exhibit strong cou-pling between the aerodynamics and structural dy-namics. The author's precursor work4 considered thesteady case for a single beam/wing. This proved tobe e�ective for design of 
exible lightweight wings forhuman-powered aircraft and high-altitude drones. Thepresent work is a major extension, with multiple beamsand a full unsteady treatment included. Because allcomponents are modeled as beams and lifting lines,the approach is inherently limited to moderate or highaspect ratios. The overall physical model is shown vi-sually in Figure 1, and its key features are summarizedbelow.
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Fig. 1 Con�guration representationStructures. General nonlinear unsteady bend-ing/torsion beams, connected by joints. Arbitrarymass, inertia, sti�ness distributions. Points with mass,angular momentum, and propulsive forces.

Aerodynamics. Unsteady lifting lines with wind-aligned trailing vorticity. General section propertieswith control-surface de
ection. Stall-model e�ects onlift and drag. Slender bodies with forces, moments,and volume displacement e�ects on 
ow. Prandtl-Glauert compressibility correction in wind axes.Flight Dynamics. Overall body dynamics repre-sented. Gust velocity �eld embedded in atmosphere.Control. General state-feedback law drives control-surface de
ections and thrust settings.Rather than relying on coupling of these \disci-plines" through in
uence matrices, the present ap-proach simply treats all of the governing equationsas a coupled nonlinear system, solved directly by afull Newton method. The one-dimensional descriptionof the component beams gives a small state vectorand fast solution, with no need for modal represen-tations. The frequency-domain calculations make useof the system Jacobian matrix already available fromthe base nonlinear problem, giving further economy.Not using modal coordinates for 
utter and forced-response predictions removes any uncertainties relatedto mode truncation or mode coupling.The overall method is implemented in the programASWING, which is aimed at e�ective preliminary air-craft design via rapid interactive setup, computation,and analysis. The remainder of the paper will sum-marize the physical models, numerical discretizations,and the solution techniques involved. Validation andapplication computations will be presented.Axis SystemsThe aircraft description uses three cartesian coordi-nate systems, XY Z, xyz, csn, shown in Figures 2, 3.The freestream velocity ~V1 is opposite the aircraft ve-locity ~U , and is related to V1, � and � in the standardmanner. ~V1 = V18<:cos� cos�� sin�sin� cos�9=; = �~U (1)Local Beam CoordinatesThe beam stress/strain and aerodynamic force rela-tions are developed in the csn system, with s nearlyparallel with the tension axis. The transformation ofany vector from xyz to csn is via the rotation tensor��T formed from the local Euler angles ';  ; #, appliedin that order.��T = 24 cos# 0 �sin#0 1 0sin# 0 cos# 3524 cos sin 0�sin cos 00 0 13524 1 0 00 cos' sin'0 �sin' cos'352American Institute of Aeronautics and Astronautics
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RFig. 3 Velocities and rotation rates.Figure 2 shows the transformation sequence. Thec; s; n beam curvatures are related to the rate of changeof ��T (�s is actually a twist rate).�~�csn � ��T = d ��Tds ! ~�csn = ��K dds8<: '# 9=;��K = 24 cos cos# 0 �sin#� sin 1 0cos sin# 0 cos#35The Euler angle sequence in Figure 2 has the usualpolar singularity at  = �90�. Using the alternativesequence  ; '; # for fuselage beams avoids this prob-lem.Bending-Moment and Force ResultantsThe bending moment and force resultants are con-sidered in both xyz and csn axes, with ��T relating the

two. ~Mcsn = ��T ~Mxyz ; ~Fcsn = ��T ~FxyzFigure 4 shows the sign conventions for the ~M and ~Fcomponents. Note that Ms is a torsion load while McandMn are bending moments. Likewise, Fs is an axialload, while Fc and Fn are shear loads. Such interpre-tation cannot be made for the x; y; z components.
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Fig. 4 Load resultants on element of beam.Stress-Strain Beam RelationsA beam section is shown in Figure 5. The overallextensional strain at some location c; n is�(c; n) = �s + c (�n � �n0) � n (�c � �c0)where �s is the strain at the s axis, and �0 are thecurvatures of the unloaded beam, calculated from thespeci�ed unloaded '0, #0,  0 distributions (i.e. thejig shape). The axial force and moment vector arerelated to the beam extensional and curvatures viathe bending-sti�ness matrix ��E (necessarily symmet-ric). Minguet3 also considers the c; n shear strains.These will not be considered here.Fs = EA �(cta; nta) (2)~Mcsn = ��E f~�� ~�0gcsn (3)The tension axis location cta,nta is the usual modulus-weighted area centroid of the beam section. The sixcomponents of ��E, such as EIcc, GJ , etc., are prescribedas one-dimensional functions along the beam.Force and Moment Equilibrium RelationsThe force and moment balance on a beam elementof length ds is expressed in the x; y; z axes asd~F + ~f ds + �~FP d(1) = 0 (4)d ~M + ~mds + � ~MP d(1) + d~r � ~F = 0 (5)where ~f and ~m are applied distributed loads, �~FP and� ~MP are applied point loads, and d(1) is the unit-impulse function.3American Institute of Aeronautics and Astronautics
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taFig. 5 Beam section with curvatures and resultingstrain.Equations (3,4,5) are valid for arbitrarily large beamdeformations, and for angle discontinuities such as di-hedral breaks. For small deformations they becomelinear bending/torsion beam relations.Discrete FormulationThe discrete representation of the beam is given bythe 18 node variables~ri ~�i ~Mi ~Fi ~ui ~!iwhere i is the node index along the beam. The Euler-angle triplet ~� = ('; #;  ) is not a proper vector, butserves as convenient shorthand. For steady or quasi-steady problems, ~ui and ~!i can be omitted, giving only12 variables per node.Box �nite-di�erence discretization will be employed.For the present nonlinear problem it is extremely sim-ple and 2nd-order accurate. It can also capture solu-tion discontinuities with no special treatment. In thefollowing development, every vector is assumed to beexpressed in xyz axes unless subscripted by csn.Interior EquationsThe displacements and angles are related by threediscrete compatibility relations�~r � ��T Ta f 0 1+�s 0 gTa �s0 = 0 (6)where s0 is the unloaded-beam arc length, and �( ) isa di�erence and ( )a is a simple average between the iand i+1 stations, e.g.�x = xi+1 � xi ; ��T a = 12 � ��T i+1 + ��T i� :The axial strain in (6) is related to the local loads.�s = � FsEA�a +�fnta 0 � ctag ��E�1 ~MTcsn�aEquations (3,4,5) are discretized as follows.��Ka �~� � ��Ka0 �~�0 � ��E�1a ��T a ~Ma �s = 0 (7)

� ~M + ~ma �s + � ~MP + �~r � ~Fa = 0 (8)�~F + ~fa �s + �~FP = 0 (9)The loads ~f , ~m, �~FP , � ~MP , will be derived shortly.The discrete equilibrium equations (8,9) are stronglyconservative, with no net force or moment being \lost"due to discretization errors. Discontinuities due tobeam angle breaks or concentrated loads are capturedperfectly simply by placing these on a zero-length in-terval with �s = 0. The equations then automaticallybecome the correct discontinuity-jump relations.Kinematic ConstraintsThe equations governing ~ui and ~!i, used only forunsteady cases, are direct kinematic constraints.ddt~ri � ~ui = 0 (10)ddt~�i � h ��T T ��Ki�1 ~!i = 0 (11)Boundary Conditions and ConstraintsEquations (6,7,8,9) require twelve appropriateboundary conditions to form a closed system. Typ-ically these consist of six kinematic and six load con-ditions ~ri = ~rspec ; ~�i = ~�spec~Fi = ~Fspec ; ~Mi = ~Mspecimposed at appropriate locations. These typically ap-pear at the beam ends with ~Fspec = ~Mspec = 0, suchas at a wingtip, and also in the interior at beam-joint or ground locations where displacement and loadcompatibility conditions between the joined beams areimposed.Local Dynamics and Applied LoadsFrom Figure 3, the absolute velocity ~v and accel-eration ~a at a beam point ~ri on the s-axis have thefollowing forms. Centripetal and Coriolis terms ap-pear in ~ai.~v(~ri) � ~vi = ~U + ~ui + ~
� ~ri~a(~ri) � ~ai = _~U + _~ui + _~
� ~ri+ ~
� �~
� ~ri� + 2~
� ~uiA beam point ~rp o� of the s-axis is de�ned by an o�setvector �~rp, �xed to the local csn system. Its relativerate is then due only to its relative rotation ~!i.ddt �~rp = ~!i ��~rp4American Institute of Aeronautics and Astronautics



The absolute velocity and acceleration at ~rp follow.~rp = ~ri + �~rp~v(~rp) � ~vp = ~vi + �~
 + ~!i���~rp (12)~a(~rp) � ~ap = ~ai + � _~
+ _~!i���~rp+ ~
� �~
��~rp�+ �2~
+ ~!i�� (~!i��~rp) (13)The total applied distributed loads consist of lift,drag, acceleration, and apparent-mass forces.~f = ~flift + ~fdrag + ~facc + ~fam~m = ~mlift + ~mdrag + ~macc + ~mamThe applied concentrated loads are due to pointmasses, external elastic struts, and beam joints.�~FP = �~Fpm + �~Fstrut + �~Fjoint� ~MP = � ~Mpm + � ~Mstrut + � ~MjointAll loads will involve the local ĉ; ŝ; n̂ unit vectors,shown in Figure 3. When speci�ed in xyz axes, theyare simply the rows of the transformation tensor.24 � � � ĉ � � �� � � ŝ � � �� � � n̂ � � �35xyz = 24 ��T 35Aerodynamic LoadsUnsteady aerodynamic loads are given in terms ofan unsteady circulation � on the lifting-line beamsand trailing vortex sheets, expanded in a time-laggedFourier series in the spanwise Glauert angle �.�(�; �) = KXk=1Ak(�) sin(k�) (14)� = arccos(s=smax) ; � = t � `=V1Here, �smax � s � smax is the spanwise arc length,and ` is the streamwise arc length. Alternatively, asimpler piecewise-constant spanwise distribution Ai(�)can be employed, but at some cost increase. The circu-lation �(�; t) on the beam itself corresponds to ` = 0.Velocity Summation. The absolute velocity ~vc=4 ofthe bound vortex at the quarter-chord location ~rc=4 isgiven by equation (12).�~rc=4 = (�c=4��xo) ĉ~vc=4 = ~vi + �~
+ ~!i���~rc=4

The velocity relative to the bound vortex is then givenby a kinematic velocity summation.~V (~rc=4; t) = ~Vind + �~Vgust � ~vc=4~Vind = KXk=1 ~wk(~rc=4; t)Ak + ~w1(~rc=4)V1The ~w in
uence functions for the induced velocity willbe developed later.The gust velocity is prescribed as a function of po-sition ~RE, with ( )E denoting reference to earth XY Zaxes. Conversion into the xyz axes is via the ��TE trans-formation tensor, formed using the �;�;	 aircraftEuler angle sequence pictured in Figure 2.~rE = ~RE + ��TE ~r�~Vgust(~r; ~RE; ~�) = ��T TE ~VEgust(~rE)Surface-beam lift and drag forces. The lift and mo-ment are determined using the steady and unsteadyvector form of the Kutta-Joukowsky theorem, with therelative velocity ~V taken at ~rc=4.~flift = �� ~V � ŝ + � @�@t �cj~V?j ~V � ŝ (15)~mlift = �~rc=4 � ~flift + 12� j~V?j2 �c2 cm ŝ (16)~V? = ~V � (~V � ŝ) ŝWith a suitable constraint on �, these forms will beseen to closely reproduce Theodorsen's result5 in the2D case. The pitching moment coe�cient is given bycm = �cmo + dcmd�F1 �F1 + dcmd�F2 �F2 : : :� 1p1�M2?and has contributions from control surface or 
ap de-
ections �F . These terms allow modeling of e�ectssuch as aileron reversal. The Prandtl-Glauert fac-tor uses the local perpendicular Mach number M? =j~V?j=Vsound.The pro�le drag force is resolved into a friction-dragpart along ~V , and a pressure-drag part perpendicularto the beam's axis. The pro�le-drag moment is ne-glected.~fdrag = 12� j~V j~V �c cdf + 12� j~V?j~V? �c cdp (17)+ 2 � ~V?j~V?j �~Vc:p: � n̂c:p:�2 �c (18)The third term is nonzero only when the local c` ex-ceeds the stall limits, as will be described later.5American Institute of Aeronautics and Astronautics



Fuselage-beam lift and drag forces. The lift force ona fuselage beam of radius R is determined fromslender-body theory.~flift = � ~V? (~V � ŝ) 2�RdRds~fdrag = 12� j~V j ~V 2Rcdf + 12� j~V?j ~V? 2RcdpHere, cdf is comparable to the skin Cf , and cdp cor-responds to the CD of a circular cylinder, roughly 1.2for subcritical 
ow, and 0.4 for supercritical 
ow.Inertial and Gravity LoadsThe inertia and gravity loads act at the local masscentroid ~ri +�~rcg . From equation (13)�~rcg = ccg ĉ + ncg n̂~acg = ~ai + � _~
+ _~!i���~rcg+ ~
��~
��~rcg�+ �2~
+~!i��(~!i��~rcg)and the gravity, inertial, and precession loads are~facc = � (~g � ~acg)~macc = �~rcg � ~facc � ��T T ��� ��T � _~
 + _~!i�� �~
+ ~!i�� n ��T T ��� ��T �~
+ ~!i�owhere � is the mass/length density of the beam, and��� is the section inertia/length tensor in csn axes.The apparent-mass loads can depend only on thenormal component of the acceleration ~ac=2.�~rc=2 = (�c=2��xo) ĉ~ac=2 = ~ai + � _~
+ _~!i���~rc=2+ ~
��~
��~rc=2�+ �2~
+~!i���~!i��~rc=2�The force and moment follow from Theodorsen's the-ory.~fam = �4 � �c2 h~V��~
+ ~!i� � n̂ � ~ac=2 � n̂ i n̂~mam = � �16� �c3h~V��~
 + ~!i� � n̂ + �c8 � _~
+ _~!i� � ŝi ŝ+ �~rc=2 � ~famThe apparent-mass loads on a fuselage beam are de-termined via slender-body theory.~fam = �2� �R2 �~ai � (~ai � ŝ) ŝ�

Point-Mass LoadsA point with mass mp and angular momentum ~Hpcan represent a nacelle, external store, rotor, etc,mounted to a beam by a rigid pylon, as shown in Fig-ure 6. Its location and angular momentum in xyz axesare: �~rp = ��T T f cp sp np gT = ��T T ��T 0�~rp0~rp = ~ri + �~rp~Hp = ��T T ��T 0 ~Hp0Although ��T 0, �~rp0 , ~Hp0 are �xed at their jig values,~rp and ~Hp are \waved around" appropriately in spacealong with the beam.
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Fig. 7 A joint pylon linking two beams.Velocity In
uence Coe�cientsPrandtl-Glauert TransformationThe induced velocity has contributions from vor-ticity on the lifting surface beams and trailing vor-tex sheets, and from source and doublet distributionsalong the beams with volume. Figure 8 shows thequantities involved in the relevant summation inte-grals, performed in the wind-aligned Prandtl-Glauertspace f�; �; �gT = ��P fx; y; zgT to account for compress-ibility.��P = 24� � � ~� � � �� � � �̂ � � �� � � �̂ � � �35 = 241� cos� cos � � 1� sin� 1� sin� cos�cos� sin� cos� sin� sin ��sin� 0 cos� 35The ~� vector is aligned with ~V1 as can be seen bycomparing with equation (1).The PG equation for the perturbation potential�(x; y; z) transforms to the Laplace equation in ���space, whose solution for unit Ak and V1 gives thein
uence functions ~wk and ~w1. The summation in-tegrals e�ectively give the ���-velocity r��� �. Thexyz-velocity is then obtained via the chain rule, whichamounts to multiplication by the transpose of ��P (notits inverse). ~Vind = rxyz � = ��P T r��� � (21)Vortex In
uence FunctionThe vortex in
uence function ~wk(~r) is given by theBiot-Savart integral over the k0th circulation mode.The mode's vorticity is represented by a discretebound/trailing vortex lattice system, shown in Fig-ure 9.
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section lift-curve slope is reproduced.h = 14� dc`d�For thin airfoils, h=1=2 is appropriate. Both ~rh:v: and~rc:p: shift spanwise as the freestream direction changes.The e�ective normal vector n̂c:p: at the control pointis rotated away from the geometric n̂ by the zero-liftline angle �A relative to the c axis. This includes con-tributions from the 
ap de
ections �F .n̂c:p: = ��T T fsin�A 0 cos�AgT�A = �Ao + dc`=d�F1dc`=d� �F1 + dc`=d�F2dc`=d� �F2 : : :The overall ~wk for the k0th mode sin(k�) is given bythe Biot-Savart law applied to the mode's vortices.~wk = ��P Tr����k =24 ��P T 35( 14� I�1Xi=1 sin(k�a)Z d~̀� ~��3 )The vortex element d~̀ belongs to the horseshoe vor-tex spanning the i:::i+1 stations, and ~� is the relativeposition of the �eld point, as shown in Figure 8. Bothare de�ned in ��� space.d~̀ = ��P d~r ~� = ��Pf~r � ~r(`)gFor surfaces which do not contain the control pointin question, ~wk is modi�ed by a �nite vortex coresize ", by replacing �2 ! �2 + "2. Choosing " =max (�ca=4 ; �s) results in the vortex �laments beingsmeared into a continuous vortex sheet. This is es-sential to produce a well-behaved solution if the wakeimpinges on a downstream surface.For unsteady 
ows, The Biot-Savart integral aboveis also evaluated for the shed vortices, whose strengthis obtained from Ak(�)'s dependence on ` via thelagged-time variable � . No attempt is currently madeto track the trajectories of the shed vortices. The en-tire wake geometry is simply assumed to be straight,and aligned with the instantaneous ~V1.Locally-2D ApproximationIn lieu of computing the shed vortices' contributionto ~wk at control points ~rc:p:, a simpler and more eco-nomical approach is to integrate only over the \steady"bound and trailing vortices, and to model the shed vor-tices by an empirical lag term.(~Vind)c:p: = KXk=1 ~wkAk(t) + ~w1V1(t)� bV? @�@t n̂c:p: (22)The last lag term accounts for the downwash of thelocal spanwise vorticity being shed at a rate of @�=@t.

In the 2D thin-airfoil limit, using (~Vind)c:p: above toset 
ow tangency at the 3/4 chord point gives� + ��c bV d�dt = � �c hV # � _z + �c4 _#i (23)where #(t) and z(t) are the pitch and plunge motions.For harmonic motion,#(t) = ~#ei!t ; z(t) = ~zei!t ; �(t) = ~�ei!tand the circulation-related lift follows from (15),~flift = �V ~� (1 + 2ik)= ��V 2 �c��1+ ik2�~#� ik~z�c=2� 1+2ik1+2�ik b (24)with k = !�c=2V . To match Theodorsen's result, thefraction on the righthand side should be equal to theTheodorsen lag function C(k) = F (k) + iG(k), whichhas C(k) ! 1=2 asymptotically as k ! 1. Settingb = 2=� to match this limit de�nes an implied e�ectivelag function.Cimplied(k) = (F + iG)implied = 1 + 2ik1 + 4ik (25)Figure 10 shows that the two compare reasonably well.
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kFig. 10 Exact Theodorsen function, compared toapproximation implied by lagged downwash in (22)Volume In
uence FunctionsThe volume contribution to the induced velocity isgiven by source and doublet densities �, ~�. These give
ow tangency on the circular beam of cross-sectionalarea �R2, in the presence of unit freestream ~�,�(`) = d(�R2)d` �~� � ^̀� ; ~�(`) = 2�R2�~� � (~� � ^̀)^̀�8American Institute of Aeronautics and Astronautics



and are de�ned in ��� space. Integration along allbeams gives the volume in
uence function.~w1(~r) = 24 ��P T 358<: 14�Z " �~�(�2 + "2)3=2+ ~��2 � 3(~� � ~�)~�(�2 + "2)5=2 #d`9=; (26)A suitable desingularizing \core size" is " = R=2.Global Variables and ConstraintsIn addition to the 18 structural node unknownsxi; yi; : : : listed earlier, the overall aero/structuralproblem also has a smaller number of \global" vari-ables�~rJ �~�J ~FJ ~MJ Ak ~RE ~� ~U _~U ~
 _~
 �F1 �F2 : : :which require the same number of constraints.Aircraft-Motion ConstraintsThe aircraft position ~RE and Euler angles ~� are con-strained by direct kinematic relations.ddt ~RE � ��TE ~U = 0ddt ~� � h ��T TE ��KEi�1 ~
 = 0Velocity and Rotation-Rate ConstraintsFor static cases, the aircraft velocity ~U can be con-strained directly, typically with speci�ed V1, �, � inequation (1). The angular rates ~
 can also be con-strained directly, or indirectly by specifying a zeromoments about a chosen reference point. The latteroption can be used to determine trimmed-
ight steadyrotation rates, for example.For unsteady 
ight cases, ~U and ~
 are governed bytheir kinematic constraints.ddt ~U � _~U + ~
� ~U = 0 ; ddt ~
 � _~
 = 0Acceleration ConstraintsThe accelerations _~U , _~
 can be constrained directly,_~U = _~U spec ; _~
 = _~
specwhich simulates a zero or prescribed motion. Forquasi-static 
ight, it is necessary to impose overallforce and moment balance instead. The appropriateequations are~Fi+1 � ~Fi = 0 ; ~Mi+1 � ~Mi = 0imposed across the zero-length ground interval.

Beam Joint ConstraintsTwelve constraints are required for �~rJ ;�~�J ; ~MJ ; ~FJde�ned for each beam joint, shown in Figure 7. Setting~r2 � ~r1 � ��T T1 ��T 10 (~r20 � ~r10) = 0h ��T T1 ��T 10i
 h ��T T2 ��T 20i = 0forces the joined beams to retain their unloaded-state distance and relative orientation. The othersix are load equilibrium equations (8,9), with addedjoint loads. These were displaced by kinematic con-straints (20).� ~M + ~ma�s + �~r� ~Fa = ~MJ � (~ri2�~ri1)� ~FJ�~F + ~fa �s = ~FJCirculation Coe�cient ConstraintsThe circulation coe�cients Ak for each surface re-quire constraints which enforce 
ow tangency on thatsurface. ~Vc:p: � n̂c:p: = 0 (27)If the locally-2D unsteady approximation is used (22),a slightly modi�ed 
ow-tangency constraint results.�~V � n̂�net � �~Vc:p: � n̂c:p:�� bV? @�@t = 0 (28)In either case, typically fewer circulation coe�cientsA1:::K are present than control points 1 : : : I�1. Aweighted-residual approach is therefore used.I�1Xi=1 �~Vc:p: � n̂c:p:�a sin(k�a) �� = 0 ; k = 1 : : :KIn e�ect, a discrete Fourier analysis of the 
ow tan-gency residual is performed for each surface, with theK lowest residual wavenumbers being required to van-ish.The 
ow tangency requirement (27) or (28) is mod-i�ed to model stall, using the local lift coe�cient:~V (~rc:p:) � n̂c:p: � V?4�h Ks fstall(c`) = 0 (29)c` = 2�=�cV?fstall(c`) = �c` log 1 + exp[(c` � c`max)=�c`]1 + exp[(c`min � c`)=�c`]where the fstall function has a derivative of zero insidethe stall limits, and unity outside the stall limits. Inthe 2D case this gives a lift curve slope ofdc`d� ' � 4�h ; c`min < c` < c`max4�h=(1 +Ks) ; c` < c`min ; c`max < c`9American Institute of Aeronautics and Astronautics



inside and outside the stall limits, as sketched in Figure11. The width of the stall transition region is roughly�c`. Using Ks ' 40 and �c` ' 0:05 gives a realistic2D c`(�) lift curve. The nonzero post-stall ~V �n̂ impliedby equation (29) results in a drag-force contribution in(18). This added pro�le drag coe�cient iscd = 4 ~V � n̂V !2 ' 4� Ks1 +Ks�2 �sin� � c`max4�h �2and reaches approximately cd ' 2:0 at � = 90�.
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Fig. 11 E�ective section c`(�) and cd(�) resultingfrom stall model.Newton System StructureThe state de�ning the overall unsteady problem isconveniently partitioned into two vectors.U = �~ri ~�i ~Mi ~Fi ~ui ~!i �~rJ �~�J ~MJ ~FJAk ~RE ~� ~U ~
 _~U _~
 E�D = ��F1 �F2 : : :�Here, E is a control error-integral vector de�ned asE = R t(U�Uc) dt or _E = U�Ucwhere Uc is the commanded state. Typically, E andUc have only a few nonzero elements, although simu-lation of full-state control is computationally feasiblehere.All equations are treated in nonlinear residual formR(U; _U;D ; Uc) = 0from which follows the corresponding linearized sys-tem.� @R@U ��U + � @R@ _U �� _U + � @R@D ��D = �R (30)

The leftmost Jacobian matrix has full rank. When thetwo other matrix terms are either eliminated or theequation system is suitably augmented, and �R = �Ris imposed, equation (30) becomes a Newton systemwhich can be solved for the update vector �U.The most general constraints on D are some linearor nonlinear state-feedback control law residuals.C(U; _U;D ; Uc) = 0An explicit and more typical control law would beC � D + f(U; _U ; Uc) = 0or simplyD = �f(Uc) in the case of open-loop control.In either case, the linearized form is:� @f@U � �U + � @f@ _U � � _U + �D = � (D+ f) (31)A convenient implementation of (31) uses the con-trol law f(: : :) provided by the user as a black-box sub-routine, which allows quick prototype testing of can-didate control schemes for stability. The commandedvector Uc(t) is imposed interactively at runtime. Thisallows rapid investigation of forced-response behavioras well. System SolutionFour types of solutions can be performed, as de-scribed below. All rely on the same Jacobian matricesof the nonlinear system R = 0, but in di�erent ways.Steady CalculationSetting _U = 0 and � _U = 0 in (30,31) and iterat-ing the resulting Newton system produces a steady orquasi-steady nonlinear solution U, D.Time-Domain CalculationA time history is a sequence of states U1, U2 . . .Unat speci�ed times, with _U expressed as a backwarddi�erence in time, e.g._U = k0Un + k1Un�1 + k2Un�2The time-di�erencing coe�cients k are known con-stants. Hence, � _U = k0 �U, which allows the elimi-nation of the unsteady Jacobian via the substitution� @R@U ��U + � @R@ _U �� _U �! �@R@U + k0 @R@ _U��Uand likewise for [@f=@U] and [@f=@ _U]. The resultingNewton system (30,31) is iterated for the unknownUn,Dn at each time level.10American Institute of Aeronautics and Astronautics



Frequency-Response AnalysisA small time-harmonic state variation in the form�U = Û exp(i!t)is superimposed on some converged steady or unsteady(time-marched) nonlinear state U. The perturbedU must still satisfy R(U; _U ; Uc) = 0, and also theequivalent linearized form �R = 0. The latter gives��A �U � ��M � _U = ��B �Uc (32)��A = @R@U ��M = �@R@ _U ��B = � @R@Ucwhere the Jacobian matrices have been simply re-named as the \sti�ness", \mass", and \control" ma-trices. For brevity, U now includes D, and R nowincludes C.The response coe�cient Û is obtained from thespeci�ed Ûc by directly solving the complex form ofsystem (32). h ��A� i! ��Mi Û = ��BÛc (33)Typically Ûc contains speci�ed control vector vari-ables (�F )c. Solving (33) for a range of ! producesBode plots for all quantities of interest.The response Û is examined as a perturbed solutionU0 = <nU + c Û exp(i�)owith the scale c and phase � provided at runtime.Alternatively, setting � = !t generates an on-screenmovie of U0(t). Both methods are useful.Eigenmode AnalysisEigenmodes are nontrivial solutions X̂` of the un-forced system (33), with unknown complex eigenvalues�` replacing the forcing imaginary frequency i!.��AX̂` = ��MX̂` �` (34)Instability of eigenmode ` is indicated if <(�`) > 0.This can be either a 
ight instability (e.g. spiral), ora structural instability (e.g. 
utter), as distinguishedby the frequency =(�`) and the structure of X̂`.The ARPACK6 sparse eigenvalue package, based onArnoldi iteration, is used to rapidly compute the eigen-pairs from (34) during an interactive session.Application ExamplesOscillating BeamAn eigenmode analysis is performed on a uniformbeam 
oating freely in space to validate part of

the method implementation and to test the accuracyof the �nite-di�erence scheme. Table 1 shows theanalytically-derived exact frequencies for the four low-est symmetric and antisymmetric modes. Also shownis the % error in the computed frequencies versus thenumber of grid nodes on one half of the beam. Theerror decreases as (N�1)�2, con�rming the method is2nd-order accurate.Table 1 Bending frequencies of free beam, andcomputed % error versus number of grid nodes N .Mode !L2pEI=� �!computed!exact � 1�� 100%(exact) N=41 N=21 N=11 N=61 5.5933 0.024 0.096 0.383 1.5162 15.4182 0.090 0.360 1.443 5.8053 30.2259 0.193 0.775 3.127 12.9634 49.9649 0.336 1.350 5.513 23.8292-D Flutter CaseA rigid wing of aspect ratio 200 is mounted ontwo massless \spring" beams with �nite EA and GJto duplicate the classical 2D bending/torsion 
uttercase analyzed by Theodorsen.5 The intent is to vali-date much of the unsteady aerodynamic formulation,and to examine the limitations of the simple lagged-downwash approximation (22). The following param-eters are chosen:Apparent-mass ratio: ���c2=4� = 0:2405Inertia/mass ratio: 4�nn=��c2 = 1:60Mass centroid: �xcg=�c = 0:30 : : :0:50For this case 
utter occurs at k ' 0:2 : : : 0:5, depend-ing on �xcg . The rather large values of the apparent-mass and inertia ratios ensure that all the apparentmass and inertial-coupling terms in the beam loads ~fand ~m are active, giving a more thorough validation.Figure 12 shows the 
utter speeds computed in threeways: i) Theodorsen method with the \exact"C(k) lagfunction, ii) Theodorsen method with the \implied"C(k) lag function (25), iii) Present method, using thecriterion <(�`)=0 for the 
utter onset, with �` deter-mined from an eigenvalue analysis of the entire systemJacobian as described in the previous section.The near-exact agreement of ii) and iii) indicatesthat the overall aero/structural coupled formulation,and associated Jacobian and eigenvalue calculationsare sound. The discrepancy between i) and ii),iii) isapparently due to the di�erences between Cexact andCimplied in Figure 10. In particular, Fimplied and theresulting driving lift are somewhat too large in the krange involved here, and thus give an underpredictedV
utter.11American Institute of Aeronautics and Astronautics
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Fig. 12 Flutter speeds predicted analytically withCexact(k) and Cimplied(k), and by present method.Violent Gust EncounterThis example is a time-marched calculation of alightweight sailplane 
ying at 70 ft/s through a smallbut intense \thermal", with 30 ft/s peak vertical ve-locity. Figure 13 shows the sailplane location beforeand after the encounter. Figure 14 is a snapshotfrom an on-screen movie showing the deformed geom-etry. The ability to rapidly generate and display suchsimulations allows extensive investigation of possiblestructural or control failure modes.

Fig. 13 Sailplane 
ying though small intense gust\thermal", indicated by vertical-velocity contours.Figure 15 shows the peak extensional strain, mostlyassociated with Mc, with the spanwise distributionsfor all time snapshots overlaid. The envelope of all thecurves immediately indicates the likely failure area.

Fig. 14 Deformed sailplane midway during verti-cal gust encounter.Interestingly, the maximum strain occurs near thewingtip opposite the vertical gust, due to a whip-likeelastic response of the wing. This rather counterintu-itive result shows the importance of dynamic loadinganalysis in structural sizing of 
exible aircraft.

Fig. 15 Strain distributions for 40 time snapshotsduring gust encounter.Since the structural properties are all one-dimensional functions along the beam, it is feasible tointeractively modify the wing's geometry or structure(e.g. �c, EIcc), on the screen. One example might beto alleviate the weak spot indicated in Figure 15. Thegust-encounter simulation can then be immediately re-computed to test or con�rm the redesign.Root-Locus AnalysisAn eigenmode analysis of the sailplane for each of14 
ight velocities produces the root-locus map shownin Figure 16. Since 
ight dynamics modes as well asstructural modes are described by the overall systemJacobian, both types of modes appear, although in thiscase the distinctions are not clear. The short-periodand 1st-bending modes are quite similar in appear-ance, and relatively close in frequency. This minglingis not uncommon in highly-
exible aircraft, and canconsiderably complicate autopilot design.The present method does not distinguish between12American Institute of Aeronautics and Astronautics



the classical 
ight dynamics modes and structuralmodes. In fact, the term \structural mode" is really amisnomer, since the aerodynamic circulation variablesAk always participate. Coupling of in-vacuo modes isnot an issue | all eigenmodes are guaranteed to bedecoupled. This feature allows rapid testing of can-didate control laws with a good degree of con�dence,since the full state vector is always involved and alldynamical modes of the system are represented.As in the gust encounter case, quick design changescan be made and re-analyzed. Here, a typical redesignmight aim to modify the aircraft's natural vibrationmodes (via EIcc, GJ , �, �nn, etc.), or to modify thedistribution and magnitude of the forcing loads (viadc`=d�F ). This allows rapid tailoring of the aircraft'sdynamic response in concert with the control-law de-sign, to give a better behaved closed-loop system.

Fig. 16 Root locus map for range of velocities.ConclusionsThis paper presented an aircraft simulation modelwith aerodynamics, structures, 
ight dynamics, andcontrol laws fully and nonlinearly coupled. Simpli�-cations were employed where appropriate to reducethe computational size of the model to allow inter-active execution. The coded implementation providesan e�ective platform for rapid and e�ective prelimi-nary design.
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