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Abstract

An integrated model is developed for aerodynamic,
structural, and control simulation of flexible aircraft
in extreme flight situations. The structure consists of
joined nonlinear beams allowing arbitrarily large de-
formations. The aerodynamic model is a compressible
vortex/source-lattice with wind-aligned trailing vor-
ticity. Full unsteady terms with flight dynamics are
included. Model forcing is via gusts or control inputs.

The overall nonlinear equation set is solved by a full
Newton method. The Newton Jacobian matrix is also
used for frequency-domain computations to investigate
flight stability, control-response behavior, and flutter.
Nonlinear performance of control laws can be exam-
ined.

The numerical problem is small enough for inter-
active computation, allowing rapid diagnosis of local
aerodynamic stall, structural failure, or control system
saturation for a wide range of flight conditions. The
overall approach allows quick generation of a robust
multi-disciplinary preliminary design which can serve
as a good basis for subsequent detailed design.

Nomenclature

Coordinates and dimensions

X,Y,Z inertial (absolute) earth coordinates
T aircraft body coordinates

c,8,m local coordinates fixed to beam section
Cegy Neg €, 1 locations of mass centroid

Ctay Mia  C,n locations of tension axis

c local wing chord

T location of s axis from leading edge
R local slender-body radius

l streamwise distance

t time

T axis transformation tensor

i node index along beam; v/—1

0 spanwise Glauert coordinate

*Associate Professor, ATAA Associate Fellow
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Structural variables and parameters

7, 4,  beam-section location, velocity, rotation

U, d beam-section absolute velocity, acceleration
@, ¥, ¥  beam-section orientation Euler angles in 6
F", M beam-stress force, moment resultants

€s beam-axis extensional strain

Ke,Ks,kn, ~beam-axis ¢, s,n curvatures

EA beam extensional stiffness

El.. beam bending stiffness matrix components
K curvature/angle-rate relation tensor

v section mass/length density

r section ¢, s, n inertia/length tensor

g gravitational acceleration

Aerodynamic variables and parameters

Q, 2-D airfoil lift-curve intercept

deg/da 2-D airfoil lift-curve slope

;5 €d,  2-D section friction, pressure drag coeffs.
Cm 2-D section pitching moment coefficient

Ca

dce/ddr  2-D section flap lift derivative

dcy, /dd,  2-D section flap moment derivative
O,y Op,. .. control deflections

Ay circulation Fourier mode coefficients
‘an local induced velocity

Ve, @, B freestream speed and flow angles

W, induced-velocity influence functions
p air density

r bound circulation

A

Prandtl-Glauert factor =1/4/1 — M2

Global variables and operating parameters

—

=T

, U, (  aircraft absolute position, velocity, rotation
, 0,0

aircraft orientation Euler angles in 6

Introduction

Aircraft design is inherently a multi-disciplinary
task, where aerodynamic, structural, and control sys-
tem designs must be integrated and any conflicts re-
solved. Although making the tradeoffs between aero-
dynamic performance and structural weight (e.g. opti-
mum aspect ratio) is relatively straightforward in the
static case, the possibility of flutter or unfavorable cou-
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pling between structural modes and the control laws
greatly complicates this problem.

Current aircraft dynamics analysis systems, such
as NASTRAN,! are typically assembled from sepa-
rate general-purpose structural and aerodynamic anal-
yses, coupled through interpolated influence matrices.
To get a managable problem size, flutter or forced-
response analyses are performed via a modal approach,
using the lowest structural modes as a solution basis.
This technique is general and powerful, but its gener-
ality carries a price significant effort is needed to
generate and analyze a case. The reliance on influence
matrices makes analysis of large-deflection nonlinear
problems especially awkward. These difficulties signif-
icantly hamper preliminary design studies, where it is
advantageous to consider as many candidate designs
and operating conditions as possible.

The alternative approach presented here simplifies
the overall aircraft system description to the great-
est extent possible, while still capturing the relevant
physics. Johnson? and Minguet® have done related
work for helicopter rotors, which exhibit strong cou-
pling between the aerodynamics and structural dy-
namics. The author’s precursor work? considered the
steady case for a single beam/wing. This proved to
be effective for design of flexible lightweight wings for
human-powered aircraft and high-altitude drones. The
present work is a major extension, with multiple beams
and a full unsteady treatment included. Because all
components are modeled as beams and lifting lines,
the approach is inherently limited to moderate or high
aspect ratios. The overall physical model is shown vi-
sually in Figure 1, and its key features are summarized

below.
Surface beam

(lifting line) Unloaded geometry
Point ma Wind-aligned
Angular momentu 3 vortex wake
propulsive fori
Cp\,q\ ,
Fuselage beam

(slender body)

Beam join
g ‘4«\ g

N\
S
@ gravity ‘Surf;ce beam ’
Fig. 1 Configuration representation
Structures. General nonlinear unsteady bend-

ing/torsion beams, connected by joints. Arbitrary
mass, inertia, stiffness distributions. Points with mass,
angular momentum, and propulsive forces.

2

Aerodynamics. Unsteady lifting lines with wind-
aligned trailing vorticity. General section properties
with control-surface deflection. Stall-model effects on
lift and drag. Slender bodies with forces, moments,
and volume displacement effects on flow. Prandtl-
Glauert compressibility correction in wind axes.

Flight Dynamics. Overall body dynamics repre-
sented. Gust velocity field embedded in atmosphere.

Control. General state-feedback law drives control-
surface deflections and thrust settings.

Rather than relying on coupling of these “disci-
plines” through influence matrices, the present ap-
proach simply treats all of the governing equations
as a coupled nonlinear system, solved directly by a
full Newton method. The one-dimensional description
of the component beams gives a small state vector
and fast solution, with no need for modal represen-
tations. The frequency-domain calculations make use
of the system Jacobian matrix already available from
the base nonlinear problem, giving further economy.
Not using modal coordinates for flutter and forced-
response predictions removes any uncertainties related
to mode truncation or mode coupling.

The overall method is implemented in the program
ASWING, which is aimed at effective preliminary air-
craft design via rapid interactive setup, computation,
and analysis. The remainder of the paper will sum-
marize the physical models, numerical discretizations,
and the solution techniques involved. Validation and
application computations will be presented.

Axis Systems

The aircraft description uses three cartesian coordi-
nate systems, XY Z, xyz, csn, shown in Figures 2, 3.
The freestream velocity V. is opposite the aircraft ve-
locity U, and is related to V., @ and § in the standard
manner.

. cosa cos 3 .
V., =V, —sin 8 = -U (1)
sin & cos 3

Local Beam Coordinates

The beam stress/strain and aerodynamic force rela-
tions are developed in the csn system, with s nearly
parallel with the tension axis. The transformation of
any vector from zyz to csn is via the rotation tensor
T formed from the local Euler angles ¢, 1,9, applied
in that order.

[cosﬁ 0 7sin19-| |Vcosw sin ¢ O-I [1 0 0 -|
T = 0 1 0 —siny cosy O 0 cos¢ sing
[sinﬂ 0 cosﬂJ[ 0 0 IJ [0 —sin ¢ (‘,DSLpJ
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Fig. 2 Coordinate systems and Euler angles

Fig. 3 Velocities and rotation rates.

Figure 2 shows the transformation sequence. The
¢, s, n beam curvatures are related to the rate of change
of T (ks is actually a twist rate).

_dT _d?
—Resn X T = — - Resn = K—< 0
ds ds
(G
_ [cosw cosd O 7sin19-|
K = —siny 1 0
[cos Y sind 0 cos 19J

The Euler angle sequence in Figure 2 has the usual
polar singularity at ¢y = £90°. Using the alternative
sequence 9, @, for fuselage beams avoids this prob-
lem.

Bending-Moment and Force Resultants

The bending moment and force resultants are con-
sidered in both zyz and csn axes, with T relating the

two.

— =

Mcsn = Tszz chn = TFzyz

Figure 4 shows the sign conventions for the M and F
components. Note that M is a torsion load while M,
and M,, are bending moments. Likewise, F§ is an axial
load, while F, and F,, are shear loads. Such interpre-
tation cannot be made for the z,y, z components.

n n

Fig. 4 Load resultants on element of beam.

Stress-Strain Beam Relations

A beam section is shown in Figure 5. The overall
extensional strain at some location ¢, n is

e(c,n) = €5 + C(Hn_ﬁno) - n("':c_/ico)

where €, is the strain at the s axis, and kg are the
curvatures of the unloaded beam, calculated from the
specified unloaded g, Yo, 9o distributions (i.e. the
jig shape). The axial force and moment vector are
related to the beam extensional and curvatures via
the bending-stiffness matrix E (necessarily symmet-
ric). Minguet? also considers the ¢,n shear strains.
These will not be considered here.

F, =

Mcsn =

EA e(ctq, nta) (2)
E {R —Ro},sp, (3)
The tension axis location ¢, ,n¢, is the usual modulus-
weighted area centroid of the beam section. The six

components of F, such as El,., GJ, etc., are prescribed
as one-dimensional functions along the beam.

Force and Moment Equilibrium Relations

The force and moment balance on a beam element
of length ds is expressed in the z,y, z axes as

dF + fds + AF.d(1) = 0 (4)
dM + ds + AM,d(1) + di xF = 0 (5)
where fand m are applied distributed loads, AF, and

AM, are applied point loads, and d(1) is the unit-
impulse function.
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Fig. 5 Beam section with curvatures and resulting
strain.

Equations (3,4,5) are valid for arbitrarily large beam
deformations, and for angle discontinuities such as di-
hedral breaks. For small deformations they become
linear bending/torsion beam relations.

Discrete Formulation

The discrete representation of the beam is given by
the 18 node variables

where 7 is the node index along the beam. The Euler-
angle triplet g = (¢,9,1) is not a proper vector, but
serves as convenient shorthand. For steady or quasi-
steady problems, @; and J; can be omitted, giving only
12 variables per node.

Box finite-difference discretization will be employed.
For the present nonlinear problem it is extremely sim-
ple and 2nd-order accurate. It can also capture solu-
tion discontinuities with no special treatment. In the
following development, every vector is assumed to be
expressed in xzyz axes unless subscripted by csn.

Interior Equations

The displacements and angles are related by three
discrete compatibility relations

— T, {0 1+e, 0} asg = 0 (6)

where s is the unloaded-beam arc length, and a( ) is
a difference and ( ), is a simple average between the i
and ¢+1 stations, e.g.

1 /= -
AT = Tjy1 — T4 T, = 5 (Ti+1 + Tz) .

The axial strain in (6) is related to the local loads.

Fy
€s = <ﬁ>a+ <{nta 0 _Cta} E MCS”)[L

Equations (3,4,5) are discretized as follows.

Kooy — B, T,

[N = M, As 0 (7)

a

4

AJ\7[+ﬁiaAs+AMP +AFxfa =0
AF +f-,;AS + AF, = 0

The loads f, m, Aﬁm AMP7 will be derived shortly.
The discrete equilibrium equations (8,9) are strongly
conservative, with no net force or moment being “lost”
due to discretization errors. Discontinuities due to
beam angle breaks or concentrated loads are captured
perfectly simply by placing these on a zero-length in-
terval with As = 0. The equations then automatically
become the correct discontinuity-jump relations.

Kinematic Constraints

The equations governing ; and &J;, used only for
unsteady cases, are direct kinematic constraints.

d
d — =T = -1 N
b [T K} S = 0 (11)

Boundary Conditions and Constraints

Equations (6,7,8,9) require twelve appropriate
boundary conditions to form a closed system. Typ-
ically these consist, of six kinematic and six load con-
ditions

o
=0, spec
i — Mspec

J— =
= Tspec )
—

Fspec )

S T

= 5‘51

imposed at appropriate locatlons These typically ap-
pear at the beam ends with Fspec = Mspec = 0, such
as at a wingtip, and also in the interior at beam-

joint or ground locations where displacement and load

compatibility conditions between the joined beams are
imposed.

Local Dynamics and Applied Loads

From Figure 3, the absolute velocity ¢ and accel-
eration @ at a beam point 7 on the s-axis have the
following forms. Centripetal and Coriolis terms ap-
pear in ;.

i) =0 = U+ @ + Gx7
i) = @ = U + i + QAx7

ﬁx(ﬁxf}) +2§><1Ii

A beam point 7, off of the s-axis is defined by an offset
vector A7, fixed to the local csn system. Its relative
rate is then due only to its relative rotation ;.

d

A7, = G x AR,
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The absolute velocity and acceleration at 7, follow.

7, = 7 + AR,
iF,) = 6, = @ + (ﬁ—l—&ii) x A7,  (12)
i) = G = @ + (G+3) x A7,

a x (ﬁxAFp)

+ (2@+ai) x (B x A7) (13)

The total applied distributed loads consist of lift,
drag, acceleration, and apparent-mass forces.

flift + fdrag + facc + fam
ﬁllift + mdrag + 7ﬁacc + mam

St

The applied concentrated loads are due to point
masses, external elastic struts, and beam joints.

A-F_:P = A1:—:1)m + A-F_:strut + A-Z:—j’joint
A]\2'1:‘ = AMpm + A]\Z'strut + AAzjoint

All loads will involve the local ¢,§,n unit vectors,
shown in Figure 3. When specified in zyz axes, they
are simply the rows of the transformation tensor.

IS I
R P

Aerodynamic Loads

S > O

Unsteady aerodynamic loads are given in terms of
an unsteady circulation I' on the lifting-line beams
and trailing vortex sheets, expanded in a time-lagged
Fourier series in the spanwise Glauert angle 6.

K
U6, 7) = Y Ax(r) sin(k6) (14)
k=1

6 = arccos($/Smax) T =1t—-t/V,

Here, —smax < s < Smax 1S the spanwise arc length,
and /£ is the streamwise arc length. Alternatively, a
simpler piecewise-constant spanwise distribution A;(7)
can be employed, but at some cost increase. The circu-
lation I'(6, ¢) on the beam itself corresponds to ¢ = 0.

Velocity Summation. The absolute velocity #,/4 of
the bound vortex at the quarter-chord location 7% /4 is
given by equation (12).

AV (¢/4—%,) ¢

—

7+ (Q+Ji) x A4

N
Ve/a

5

The velocity relative to the bound vortex is then given
by a kinematic velocity summation.

—

V(Fc/47t) Vina + A‘;v‘gust - 77@/4

M=

Vind Wy (Foya,t) A 4+ W (7eya) Vi

=~
Il

1

The @ influence functions for the induced velocity will
be developed later.

The gust velocity is prescribed as a function of po-
sition Ry, with (), denoting reference to earth XY 7
axes. Conversion into the zyz axes is via the T’ trans-
formation tensor, formed using the ®,0,¥ aircraft
Euler angle sequence pictured in Figure 2.

L

T

—

T + i

—

Egust (FE)

Surface-beam lift and drag forces. The lift and mo-
ment are determined using the steady and unsteady
vector form of the Kutta-Joukowsky theorem, with the
relative velocity V taken at Te/4-

I
&

—

A‘_/'gust (F; RE: @) = E

]
S|

- — aF E had
fif = pFVx§+p—TV><§ 15
i % (15)
— — r ]' 2 = a
mige = Afes X fiige + 50\‘4\2 & em § (16)
Vi = V-(V-§)3

With a suitable constraint on I', these forms will be
seen to closely reproduce Theodorsen’s result® in the
2D case. The pitching moment coefficient is given by

de,, 5 1
&, ) e

and has contributions from control surface or flap de-
flections dz. These terms allow modeling of effects
such as aileron reversal. The Prandtl-Glauert fac-
tor uses the local perpendicular Mach number M
‘Vl ‘/Vvsound -

The profile drag force is resolved into a friction-drag
part along ‘7, and a pressure-drag part perpendicular
to the beam’s axis. The profile-drag moment is ne-
glected.

dep,
L S

Cm = (Cmo+ Wpl 251

- ]_ - ]. . .
fdrag = §p|V|VECdf + §p|VJ_|VJ_ € Cd,, (17)

2
. nc.p.) c

The third term is nonzero only when the local ¢; ex-
ceeds the stall limits, as will be described later.

—

V., /=
+ 20— (Ve (18)

VL]
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Fuselage-beam lift and drag forces. The lift force on
a fuselage beam of radius R is determined from
slender-body theory.

- dR
fiee = le (V 3) 27TRd—
s
. 1 o o 1 = -
farag = §P\V\V2Rcdf + §P\VL\VL2R%

Here, ¢4, is comparable to the skin Gy, and ¢4, cor-
responds to the Cp of a circular cylinder, roughly 1.2
for subcritical flow, and 0.4 for supercritical flow.

Inertial and Gravity Loads

The inertia and gravity loads act at the local mass
centroid 7; + Afey. From equation (13)

A7, =

CegC + Neg M

licg ai + (G+3:) x A7,

+

O (Gx A7, ) + (2043) x (@ x ATy
and the gravity, inertial, and precession loads are

facc = :u(af 609)

macc = Achxfé;cc - T
— (Gra) < 17T (G4 3))

where p is the mass/length density of the beam, and
¢ is the section inertia/length tensor in csn axes.

The apparent-mass loads can depend only on the
normal component of the acceleration @, ,.

A,y = (6)/2-2,)¢

i + (ﬁ+ri)'i) x AT,

g p—
Qe =

_|_

0 x (ﬁXAﬂﬂ) + (26-}-&)}) X (QiXAFC/z)

The force and moment follow from Theodorsen’s the-
ory.

fam = % ¢ [Px(G+3) a — -] i
ram :ff—(jpc [Vx(ﬁ+u3i)-ﬁ+ g(ﬁﬂﬁl) s]s

+ A”40/2 X f_z;m

The apparent-mass loads on a fuselage beam are de-
termined via slender-body theory.

fam = —2mp B (@ — (@ 5)5)

Point-Mass Loads

A point with mass m, and angular momentum Hp
can represent a nacelle, external store, rotor, etc,
mounted to a beam by a rigid pylon, as shown in Fig-
ure 6. Its location and angular momentum in xyz axes
are:

AF, = T {epspmnp}t =T 'f Ay,
Ty, = Ti + AF
i o- T, H

Although TO Ay, H,
7p and Hp are “waved around” appropriately in space
along with the beam.

po are fixed at their jig values,

my (U -3)

Fig. 6 Point mass m, with angular momentum Hp
and applied loads, cantilevered by rigid pylon.

The force and moment applied to the beam are

R a . 1 -5 5 -
AFpm = mp(.g*ap)+§p‘vp‘vp (CDA)p"'Feng

AMym = A7y x APy — (ﬁ + @-) x Hy + Mong

where V,, and @, are defined from A, via relations

(12,13). Including the “engine” loads ﬁeng,Meng allows
the point to represent a thrusting engine nacelle.

Joint Loads

A joint is a rigid pylon linking 7 and 7, on the
joined beams, as sketched in Figure 7.

The displacements and loads of the pylon A7, AG_;,
F}, MJ, define loads and kinematic constraints on the
joined beams. The pylon applies point loads to the
beam at point #1, and sets kinematic constraints at
point #2.

Conditions (20) replace the equilibrium equations
(8,9). These “lost” equations are 1mposed separately
as constraints effectively determining M, and F,.
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Fig. 7 A joint pylon linking two beams.

Velocity Influence Coefficients

Prandtl-Glauert Transformation

The induced velocity has contributions from vor-
ticity on the lifting surface beams and trailing vor-
tex sheets, and from source and doublet distributions
along the beams with volume. Figure 8 shows the
quantities involved in the relevant summation inte-
grals, performed in the wind-aligned Prandtl-Glauert
space {£,1,(}" = P{x,y,2}" to account for compress-
ibility.

-
f %cosacosﬁ 7;sin[7' %sinacosﬁ

P = ﬁ = cos a sin 3 cos 3 sin a sin 3
C —sin a 0 cos a

The E vector is aligned with V. as can be seen by
comparing with equation (1).

The PG equation for the perturbation potential
¢(z,y,z) transforms to the Laplace equation in &n¢
space, whose solution for unit Aj and V_, gives the
influence functions w; and wW.. The summation in-
tegrals effectively give the &n(-velocity Veuc ¢. The
zyz-velocity is then obtained via the chain rule, which
amounts to multiplication by the transpose of P (not
its inverse).

—

Vina = vzyz¢ = ]3 v&n(¢ (21)

Vortex Influence Function

The vortex influence function @y (7) is given by the
Biot-Savart integral over the k'th circulation mode.
The mode’s vorticity is represented by a discrete
bound/trailing vortex lattice system, shown in Fig-
ure 9.

\ Slender Body
(source+doublet line)

L
.
.
~
~
.
-
~e

Bound, trailing vorticity
(horseshoe vortex filament)

Fig. 8 Induced velocity contributions from, vor-
tex, source, and doublet distributions.

Airfoil-plane dimensions, and circulation

Fig. 9
mode represented by horseshoe vortices.

The location of the bound vortex segment midpoint
Th.v. 1S at the quarter-chord point along the £ axis,

— —

¢/4—T, -
rh.’U. = rﬂ + - =

€ x 8|
The control point 7 . is directly “downstream”

héqg >

=&
€3]

— —

Tep. = Tho. +

where h is chosen so that the local incompressible 2-D
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section lift-curve slope is reproduced.

_ 1 dC[
4w da
For thin airfoils, h=1/2 is appropriate. Both 7}, ,, and
Te.p. shift spanwise as the freestream direction changes.
The effective normal vector 7. ,. at the control point
is rotated away from the geometric 1 by the zero-lift
line angle a, relative to the ¢ axis. This includes con-
tributions from the flap deflections dg.

=T T
fep. = T {sina, 0 cosa,}
dC[/d(sFl dC(/d(SFQ
o, = o — L — = .
* 4o deg/da ! deg/da

The overall @y, for the k'th mode sin(k6) is given by
the Biot-Savart law applied to the mode’s vortices.

171 - -
- =T =T 1 . dl x o
wy = P vfﬂ<¢k = P {E E Sln(kea)/5—3}
i=1

The vortex element df belongs to the horseshoe vor-

tex spanning the 4...i+1 stations, and § is the relative

position of the field point, as shown in Figure 8. Both

are defined in &n( space.
dl = Pdi § = P{7— )}

For surfaces which do not contain the control point
in question, wy is modified by a finite vortex core
size €, by replacing 62 — 62 + 2. Choosing &
max (¢, /4, As) results in the vortex filaments being
smeared into a continuous vortex sheet. This is es-
sential to produce a well-behaved solution if the wake
impinges on a downstream surface.

For unsteady flows, The Biot-Savart integral above
is also evaluated for the shed vortices, whose strength
is obtained from Ag(7)’s dependence on ¢ via the
lagged-time variable 7. No attempt is currently made
to track the trajectories of the shed vortices. The en-
tire wake geometry is simply assumed to be straight,
and aligned with the instantaneous V..

Locally-2D Approximation

In lieu of computing the shed vortices’ contribution
to Wy, at control points 7 p., a simpler and more eco-
nomical approach is to integrate only over the “steady”
bound and trailing vortices, and to model the shed vor-
tices by an empirical lag term.

b oI

— — "N, 22
Vlatn-p- ( )

K
(‘_/;nd)c.p. = Z u-;kAk(t) + wocvoo(t)
k=1

The last lag term accounts for the downwash of the
local spanwise vorticity being shed at a rate of 9I'/0t.

8

—

In the 2D thin-airfoil limit, using (Vina)c.,. above to
set flow tangency at the 3/4 chord point gives

b dI'
' + mc = —

-
= C _. - 2
p” we |V Z+419 (23)

where 9(t) and z(t) are the pitch and plunge motions.
For harmonic motion,

z(t) =

and the circulation-related lift follows from (15)

I(t) = de™t | [(t) = Te™!

3

pVT (1 + 2ik)

mpV2e Kl + %) 0

with & = wé/2V. To match Theodorsen’s result, the
fraction on the righthand side should be equal to the
Theodorsen lag function C(k) = F (k) + iG(k), which
has C(k) — 1/2 asymptotically as kK — oco. Setting
b = 2/m to match this limit defines an implied effective
lag function.

fii
1+2ik

— (24
1+27ikd (24)

1+ 2ik
1+ 4ik

Cimptied(k) = (F 4 iGQ)implied = (25)

Figure 10 shows that the two compare reasonably well.

. implied F(k)
08l

exact F(k)
0.6}

04l |

0 . . . .

0 0.2

Fig. 10 Exact Theodorsen function, compared to
approximation implied by lagged downwash in (22)

Volume Influence Functions

The volume contribution to the induced velocity is
given by source and doublet densities o, V. These give
flow tangency on the circular beam of cross-sectional
area mR?, in the presence of unit freestream f_:

d(mR?)
arl

o) =

(5 -@) , B = 27R? (5 € -é)zf)
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and are defined in £n( space. Integration along all
beams gives the volume influence function.

5 _[ﬁT]i
“’wm—[ J47r/

o8
(62 + £2)3/2

762 — 3(7-8)8
T ]dﬂ (26)

A suitable desingularizing “core size” is € = R/2.

Global Variables and Constraints

In addition to the 18 structural node unknowns
Zi,Yi, ... listed earlier; the overall aero/structural
problem also has a smaller number of “global” vari-
ables

A7 A, F, M, Ay By @ U U QG Q 6, bpy. ..

which require the same number of constraints.

Aircraft-Motion Constraints

The aircraft position R and Euler angles 6 are con-
strained by direct kinematic relations.
d = -
ERE -T:U = 0

96 - [Iik] d = o

Velocity and Rotation-Rate Constraints

For static cases, the aircraft velocity U can be con-
strained directly, typically with specified V., «a, 8 in
equation (1). The angular rates € can also be con-
strained directly, or indirectly by specifying a zero
moments about a chosen reference point. The latter
option can be used to determine trimmed-flight steady
rotation rates, for example.

For unsteady flight cases, U and € are governed by
their kinematic constraints.

d - - . d -
dtU U+ QxU =0 , dtQ

Acceleration Constraints

=0

The accelerations [7, () can be constrained directly,

U = Uspe(: y Q= Qspe(‘,

which simulates a zero or prescribed motion. For
quasi-static flight, it is necessary to impose overall
force and moment balance instead. The appropriate
equations are

Fiy.—F; =0 Mg, —M; =0

imposed across the zero-length ground interval.

Beam Joint Constraints

Twelve constraints are required for A7, AG_;, MJ, E,
defined for each beam joint, shown in Figure 7. Setting

772 — ’Fl — T] Tlo (7720 _Flo) = 0

=7 = =7 =
[Tl Tlo] ® [T2 T%] = 0

forces the joined beams to retain their unloaded-
state distance and relative orientation. The other
six are load equilibrium equations (8,9), with added

joint loads. These were displaced by kinematic con-
straints (20).

AM-}-TT’LGAS + AFXﬁa = MJ_(FZ'Q_Fil)XEI
AF + f,as = F,

Circulation Coefficient Constraints

The circulation coefficients A;, for each surface re-
quire constraints which enforce flow tangency on that
surface.

—

Vc.p. 'ﬁc.p. =0 (27)

If the locally-2D unsteady approximation is used (22),
a slightly modified flow-tangency constraint results.

(7 3),0 = (P ) 08

V. ot
In either case, typically fewer circulation coefficients
Ay i are present than control points 1...7—1. A
weighted-residual approach is therefore used.

=0 (28

I—-1
Z(Vc_p_-ﬁc_p_) sin(k,) 28 =0 ; k=1...K

i=1

In effect, a discrete Fourier analysis of the flow tan-
gency residual is performed for each surface, with the
K lowest residual wavenumbers being required to van-
ish.

The flow tangency requirement (27) or (28) is mod-
ified to model stall, using the local lift coefficient:

-, R V,
V(fep.)  fep. — ﬁKs fstan(ce) = 0 (29)
¢ = 20/eV.

1 + expl(ce — Comax)/Ac]
1+ exp[(cfmin - C[)/AC[]
where the fsa1 function has a derivative of zero inside

the stall limits, and unity outside the stall limits. In
the 2D case this gives a lift curve slope of

fstan(ce) = Acy log

de¢ | 4mh . Clmin < €0 < Clmax
do — | Arh/(1+ Ks) , ¢ < Crmin > Comax < €t
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inside and outside the stall limits, as sketched in Figure
11. The width of the stall transition region is roughly
Acy. Using Ky ~ 40 and Ac¢y ~ 0.05 gives a realistic
2D ¢;(a) lift curve. The nonzero post-stall V-7 implied
by equation (29) results in a drag-force contribution in
(18). This added profile drag coefficient is

() =

and reaches approximately cqg ~ 2.0 at a = 90°.

V-
v

K
1+ K,

AC,
Cl max T L
A h [ (1+Kg)
l47r h
Gy +Gy,
'—J T CL min

Fig. 11 Effective section ¢/(a) and c4(a) resulting
from stall model.

Newton System Structure

The state defining the overall unsteady problem is
conveniently partitioned into two vectors.

M

-

F;

>

~.

U = (76
Ay,

i
o]

S &
ST

D = (5F1 5F)

Here, E is a control error-integral vector defined as

E=[(U-U)dt or E=U-U,
where U, is the commanded state. Typically, E and
U, have only a few nonzero elements, although simu-
lation of full-state control is computationally feasible
here.

All equations are treated in nonlinear residual form
R(U,U,D; U, = 0

from which follows the corresponding linearized sys-
tem.

OR

U+ | OR
ou

oD

—.}M‘J—F{ }6D:6R (30)

10

The leftmost Jacobian matrix has full rank. When the
two other matrix terms are either eliminated or the
equation system is suitably augmented, and R = —R
is imposed, equation (30) becomes a Newton system
which can be solved for the update vector dU.

The most general constraints on D are some linear
or nonlinear state-feedback control law residuals.

C(U,U,D;U,) = 0

An explicit and more typical control law would be

C D + f(U,U;U,) = 0

or simply D = —f(U..) in the case of open-loop control.
In either case, the linearized form is:

Jou+ | &
ou

ou

< —(D+f) (31)

[5f }5I'J+5D

A convenient implementation of (31) uses the con-
trol law f(...) provided by the user as a black-box sub-
routine, which allows quick prototype testing of can-
didate control schemes for stability. The commanded
vector U, (t) is imposed interactively at runtime. This
allows rapid investigation of forced-response behavior
as well.

System Solution

Four types of solutions can be performed, as de-
scribed below. All rely on the same Jacobian matrices
of the nonlinear system R = 0, but in different ways.

Steady Calculation

Setting U = 0 and 6U = 0 in (30,31) and iterat-
ing the resulting Newton system produces a steady or
quasi-steady nonlinear solution U, D.

Time-Domain Calculation

A time history is a sequence of states U', U? ... U"
at specified times, with U expressed as a backward
difference in time, e.g.

U = kU" + kKU 4+ kU2
The time-differencing coefficients k are known con-
stants. Hence, U = ko U, which allows the elimi-

nation of the unsteady Jacobian via the substitution

{ EREan
ou

and likewise for [0f/8U] and [0f/8U]. The resulting
Newton system (30,31) is iterated for the unknown U™,
D™ at each time level.

R

ou

R

}5U+ {5U

oR
ou

}sf;
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Frequency-Response Analysis

A small time-harmonic state variation in the form
6U = U exp(iwt)

is superimposed on some converged steady or unsteady
(time-marched) nonlinear state U. The perturbed
U must still satisfy R(U,fJ; U.) = 0, and also the
equivalent linearized form R = 0. The latter gives

AU — MéU = BIU, (32)
A- OR v - IR 5 - _OR
ou U oU,

where the Jacobian matrices have been simply re-
named as the “stiffness”, “mass”, and “control” ma-
trices. For brevity, U now includes D, and R now
includes C.

The response coefficient U is obtained from the
specified U, by directly solving the complex form of
system (32).
U, (33)
Typically U. contains specified control vector vari-
ables (dz).. Solving (33) for a range of w produces
Bode plots for all quantities of interest.

The response U is examined as a perturbed solution

U = §R{U + cﬂexp(iqs)}

with the scale ¢ and phase ¢ provided at runtime.
Alternatively, setting ¢ = wt generates an on-screen
movie of U'(¢). Both methods are useful.

Eigenmode Analysis

Eigenmodes are nontrivial solutions X, of the un-
forced system (33), with unknown complex eigenvalues
A¢ replacing the forcing imaginary frequency iw.

AX, = MX;\ (34)
Instability of eigenmode £ is indicated if (A;) > 0.
This can be either a flight instability (e.g. spiral), or
a structural instability (e.g. flutter), as distinguished
by the frequency 3(A¢) and the structure of X.

The ARPACKS sparse eigenvalue package, based on
Arnoldi iteration, is used to rapidly compute the eigen-

pairs from (34) during an interactive session.

Application Examples

Oscillating Beam

An eigenmode analysis is performed on a uniform
beam floating freely in space to validate part of

11

the method implementation and to test the accuracy
of the finite-difference scheme. Table 1 shows the
analytically-derived exact frequencies for the four low-
est symmetric and antisymmetric modes. Also shown
is the % error in the computed frequencies versus the
number of grid nodes on one half of the beam. The
error decreases as (N—1)"2, confirming the method is
2nd-order accurate.

Table 1 Bending frequencies of free beam, and
computed % error versus number of grid nodes N.

2
Mode| L [m - 1} x 100%

VEI 1 Wexact

(exact) | N=41 N=21 N=11 N=6
1 | 55933 | 0.024 0096 0383 1.516
2 | 154182 | 0.090 0360 1443  5.805
3 1302259 | 0193 0775  3.127 12.963
4 1499649 | 0336 1350 5.513 23.829

2-D Flutter Case

A rigid wing of aspect ratio 200 is mounted on
two massless “spring” beams with finite EA and GJ
to duplicate the classical 2D bending/torsion flutter
case analyzed by Theodorsen.’ The intent is to vali-
date much of the unsteady aerodynamic formulation,
and to examine the limitations of the simple lagged-
downwash approximation (22). The following param-
eters are chosen:

mpc® [4p = 0.2405
4ty /pe® = 1.60
Teg/c = 0.30...0.50

Apparent-mass ratio:
Inertia/mass ratio:
Mass centroid:

For this case flutter occurs at & ~ 0.2...0.5, depend-
ing on Z.4. The rather large values of the apparent-
mass and inertia ratios ensure that all the apparent
mass and inertial-coupling terms in the beam loads f_’
and m are active, giving a more thorough validation.

Figure 12 shows the flutter speeds computed in three
ways: i) Theodorsen method with the “exact” C'(k) lag
function, ) Theodorsen method with the “implied”
C'(k) lag function (25), 4ii) Present method, using the
criterion $(A,) =0 for the flutter onset, with A, deter-
mined from an eigenvalue analysis of the entire system
Jacobian as described in the previous section.

The near-exact agreement of ii) and iii) indicates
that the overall aero/structural coupled formulation,
and associated Jacobian and eigenvalue calculations
are sound. The discrepancy between i) and ii),ii) is
apparently due to the differences between Ceyact and
Cimplied in Figure 10. In particular, Fimpiiea and the
resulting driving lift are somewhat too large in the k
range involved here, and thus give an underpredicted
Vﬁutter-
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40

35 i) Analysis, exact C(k),, i
30| i) Analysis, implied C(k)
ii) Numerical, lagged V.n
25+
9]
2+t
s
15
10 | q
5L 4
0.25 0.3 0.35 0.4 0.45 0.5
Xcg/C

Fig. 12 Flutter speeds predicted analytically with
Cexact (k) and Cimpiiea(k), and by present method.

Violent Gust Encounter

This example is a time-marched calculation of a
lightweight sailplane flying at 70 ft/s through a small
but intense “thermal”; with 30 ft/s peak vertical ve-
locity. Figure 13 shows the sailplane location before
and after the encounter. Figure 14 is a snapshot
from an on-screen movie showing the deformed geom-
etry. The ability to rapidly generate and display such
simulations allows extensive investigation of possible
structural or control failure modes.

Gust field

operating paint 4l t =1.000 s

Xe = -70.29 Ye = 2.81 Ze =2.88 ft

©° =11.41 0° =4.,92 U° =14,12 deg
50.0

Z = 0.000D

RUSTTTE THOpeie |

-50.0
-100.0

20.0

Fig. 13 Sailplane flying though small intense gust
“thermal”, indicated by vertical-velocity contours.

Figure 15 shows the peak extensional strain, mostly
associated with M., with the spanwise distributions
for all time snapshots overlaid. The envelope of all the
curves immediately indicates the likely failure area.

12

X = -u2.24 ft.
Y = 0.4 Fr
Z-0.23 Ft
t

=0.60 s frane 31

Fig. 14 Deformed sailplane midway during verti-
cal gust encounter.

Interestingly, the maximum strain occurs near the
wingtip opposite the vertical gust, due to a whip-like
elastic response of the wing. This rather counterintu-
itive result shows the importance of dynamic loading
analysis in structural sizing of flexible aircraft.

0.005
Emax
0.004

0.003

0.002

0.001

4
0. 000 M=

S/Smax

Fig. 15 Strain distributions for 40 time snapshots
during gust encounter.

Since the structural properties are all one-
dimensional functions along the beam, it is feasible to
interactively modify the wing’s geometry or structure
(e.g. ¢, El..), on the screen. One example might be
to alleviate the weak spot indicated in Figure 15. The
gust-encounter simulation can then be immediately re-

computed to test or confirm the redesign.

Root-Locus Analysis

An eigenmode analysis of the sailplane for each of
14 flight velocities produces the root-locus map shown
in Figure 16. Since flight dynamics modes as well as
structural modes are described by the overall system
Jacobian, both types of modes appear, although in this
case the distinctions are not clear. The short-period
and 1st-bending modes are quite similar in appear-
ance, and relatively close in frequency. This mingling
is not uncommon in highly-flexible aircraft, and can
considerably complicate autopilot design.

The present method does not distinguish between
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the classical flight dynamics modes and structural
modes. In fact, the term “structural mode” is really a
misnomer, since the aerodynamic circulation variables
Ay always participate. Coupling of in-vacuo modes is
not an issue all eigenmodes are guaranteed to be
decoupled. This feature allows rapid testing of can-
didate control laws with a good degree of confidence,
since the full state vector is always involved and all
dynamical modes of the system are represented.

As in the gust encounter case, quick design changes
can be made and re-analyzed. Here, a typical redesign
might aim to modify the aircraft’s natural vibration
modes (via El.., GJ, p, tnn, etc.), or to modify the
distribution and magnitude of the forcing loads (via
dce/ddy). This allows rapid tailoring of the aircraft’s
dynamic response in concert with the control-law de-
sign, to give a better behaved closed-loop system.

Light Hawk

Operating points: 1..14

lstAasymm.bend/

20.0

w w/2m
10| DOOM tOPSION e o 2
cycles/s
/s N N N N N N N N N N 2.0
lst-bend./pitch
ool
. 1.5
.oy weod®
b e ac"
Yo U short period

. X(uith ben
\X P
roll isubs.

Dutch roll

‘phugoid :
spiral

-5.0
-12.5 -10.0 -7.5 -5.0

Fig. 16 Root locus map for range of velocities.

Conclusions

This paper presented an aircraft simulation model
with aerodynamics, structures, flight dynamics, and
control laws fully and nonlinearly coupled. Simplifi-
cations were employed where appropriate to reduce
the computational size of the model to allow inter-
active execution. The coded implementation provides
an effective platform for rapid and effective prelimi-
nary design.

AMERICAN INSTITUTE OF AERONAUTICS

13

References

'Rodden, W., “MCS/NASTRAN Handbook for Aeroelastic
Analysis T & II,” Report MSR-57, The MacNeal-Schwendler
Corporation, Los Angeles, CA, 1987.

2Johnson, W., “Development of a Comprehensive Analysis
for Rotorcraft-I. Rotor Model and Wake Analysis.” Vertica,
Vol. 5, 1981, pp. 99-129.

3Minguet, P., Static and dynamic behavior of composite he-
licopter rotor blades under large deflections, Ph.D. thesis, MIT,
June 1989.

4Drela, M., “Method for Simultaneous Wing Aerodynamic
and Structural Load Prediction,” Journal of Aircraft, Vol. 27,
No. 8, Aug 1990.

5Theodorsen, T., “General Theory of Aerodynamic Instabil-
ity and the Mechanism of Flutter,” TR 490, NACA, 1935.

6Lehoucq, R., Sorensen, D., and Yang, C., ARPACK
User’s Guide: Solution of Large Scale Figenvalue Problems
with Implicitly Restarted Arnoldi Methods, STAM Publications,
Philadelphia, 1998, ISBN 0-89871-407-9.

AND ASTRONAUTICS



