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Abstract 

 

The aircraft engine is a key element in improving overall performance of both 

military and civil aircraft.  As designers look to improve performance, turbomachinery 

aeroelasticity, i.e. the study of fluid-structure interactions in compressors, is an important 

consideration when designing an efficient and reliable aircraft engine.  Compressor 

designers are concerned with these interactions because there is a potential for structural 

failures due to flow-induced vibrations such as flutter.  Flutter is a nearly instantaneous 

self-excited response that typically results in total structural failure.  Because flutter poses 

as a sudden threat to aircraft safety, it is the center of this investigation.  A method known 

as blade mistuning is tested to determine if it is a viable approach to reducing the 

occurrence of flutter.  Mistuning is small deviations between blade stiffness and mass 

caused by manufacturing tolerances and wear.  The effect of mistuned compressor blades 

on flutter has been studied over the past few decades and research has shown that a small 

amount of mistuning may have a beneficial effect on flutter velocity and could be used as 

a passive control method.  The following investigation makes use of a recently developed 

unsteady aerodynamic model, based on the vortex lattice method, which is a discrete 

time-domain compressible flow solver applied to a two-dimensional, variable geometry 

cascade.  The vortex lattice method is coupled with a typical section cascade structural 
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model to form a set of aeroelastic equations of motion.  These equations of motion 

include the effects of mistuning by deviating pitching frequency.  A Runge-Kutta 

integration scheme is implemented to solve the equations of motion.  One method of 

calculating the flutter velocity and stability of a blade is by tracking damping.  In this 

case, damping of the aeroelastic transient response is identified using a least-squares 

curve-fitting method.  Damping of the response indicates system stability, where flutter is 

unstable, diverging oscillations.  Results for this method are generated for two different 

cases.  The first case is a twelve-blade cascade in a Mach 0.3 flow where alternate blade 

pitching frequency mistuning is studied with mistuning values of 0, 1, and 2%.  Case two 

is a twenty-blade cascade in an incompressible flow where alternate blade pitching 

frequency mistuning is studied at values of 0, 1, 2 and 5% mistuning, as well as a case of 

random mistuning.  The results show that mistuning introduces an exchange of energy 

between blades which improves the flutter velocity for a few blades in certain regions, 

but no drastic increase in flutter velocity was noted due to mistuning. 
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Chapter 1: Introduction and Objectives 

 

1.1 Introduction 

Despite the significant evolution of the airplane from the Wright Flyer over the 

past century, global threats, tight profit margins and fluctuating fuel costs continually 

motivate the military and airline industry to seek improved aircraft performance and 

efficiency.  The aircraft engine, shown in Fig. 1.1, plays an important role in defining 

many aspects of aircraft performance and efficiency, as the engine provides thrust, 

defines fuel efficiency and is an important factor in improving range and service ceiling.  

One method of improving performance and efficiency is by increasing the engine thrust-

to-weight ratio. 

The compressor is the section of the engine where an increase in thrust-to-weight 

ratio and overall performance can be realized.  A computational mesh of a single 

compressor rotor is provided in Fig. 1.2.  The purpose of the compressor is to use its 

blades to convert high velocity flow into high pressure flow for combustion and 

ultimately thrust.  If the conversion can be performed with higher efficiency then a higher 

thrust can be achieved or less fuel will be required.  This higher efficiency can be 

achieved by reducing the number of blades which reduces overall weight, but also 

requires that the blades have a higher blade loading.  It is also important to reduce the 
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weight of a compressor by reducing blade weight, which often means a reduction in 

structural integrity.  Thus, it is apparent that in order to optimize the compressor design, 

the compressor blades must carry a higher load and must be lighter, which is a 

compromise between aerodynamic efficiency, blade weight and structural integrity [1].  

Looking at Fig. 1.3, it is evident that the structural engineer would like to increase 

efficiency by increasing the blade loading to blade weight ratio; however, a structural 

failures boundary is reached as that ratio becomes too large.  It is the challenge of the 

structural engineer to push the structural failures boundary to the right so a higher 

efficiency can be realized, which requires an investigation of the interaction between the 

compressor fluid and structure. 

 

1.2 Principles of Turbomachinery Aeroelasticity 

The study of fluid-structure interactions, i.e. aeroelasticity [2], is complex because 

the study requires highly coupled structural-aerodynamic models which must be analyzed 

simultaneously.  Collar’s Expanded Triangle, shown in Fig. 1.4, shows all of the potential 

interactions within the field of aeroelasticity.  This investigation is concerned with the 

aerodynamic, structural and inertial coupling. 

The study of aeroelasticity in turbomachinery is further complicated due to the 

multifarious internal environment of turbomachinery.  First, the compressor rotor is 

rotating which sets up an unsteady, periodic flowfield and produces inertial loads within 
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the blade structure.  Second, the blades are typically thin and flexible.  Third, the flow is 

highly unsteady due to the upstream disturbances (e.g. the fan and other compressor 

rotors) which produce wakes that affect the downstream blades.  Finally, because the 

blades are tightly packed, there is very strong inter-blade interaction within a compressor 

causing aerodynamic coupling and further unsteadiness [1].  This dynamic and diverse 

environment has the potential to result in structural failures due to flow-induced 

vibrations such as flutter and high cycle fatigue.   

High cycle fatigue, shown in Fig. 1.5, is a failure due to small amplitude 

oscillations that create cracks that propagate through the blade over time, which is a less 

catastrophic mode of failure and can be tested for during maintenance periods.  Flutter is 

a nearly instantaneous self-excited response that typically results in total structural 

failure.  Flutter is the result of overspeeding an engine causing rapidly diverging 

oscillations, shown in Fig. 1.6.  Because flutter poses as a more immediate threat to 

aircraft safety, it will be the center of this investigation.  It is critical that flutter is 

accurately and efficiently predicted and ultimately reduced to improve aircraft safety, 

performance and life expectancy, which is the objective of this investigation. 

 

1.3 Literature Review 

Flow-induced failures within compressors have been a major issue since the 

development of the gas turbine, as noted by reports of compressor and turbine vibration 



4 

 

problems as early as 1945 [3].  Even recently, there have been several documented cases 

of flutter during engine testing [4-9] due to the late emergence of research in 

turbomachinery aeroelasticity [1].  Engine designers have had great difficulty developing 

engines with flutter prevention with anything other than empirical models because there 

is a lack in understanding the fundamental principles of turbomachinery aeroelasticity as 

well as a lack in the development of a fast and accurate aeroelastic model.  Because 

flutter is a matter of great concern, there has been a great deal of analytical, theoretical 

and computational research to discover more deeply the mechanisms that cause flutter as 

well as methods to actively or passively prevent flutter.  The following literature review 

will cover the most significant research in turbomachinery aeroelasticity that will be 

applied to this thesis. 

Two types of aeroelastic compressor models are studied.  The first case studied is 

an ideal case in which all the compressor blades are assumed to be identical in structure, 

stiffness and mass.  Fig. 1.7 shows the mode shapes of a tuned compressor rotor, which is 

the shape a blade will take under free vibration, an important consideration for aeroelastic 

studies.  A tuned compressor rotor has mode shapes that are symmetric (i.e. cyclic 

symmetry) which allows for a simpler analysis because only one section of the 

compressor needs to be analyzed, saving computation time and model complexity. 
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Early flutter computation models, like the model developed by Bendiksen and 

Friedmann [10], use this simple tuned approach.  Bendiksen and Friedmann use a two-

dimensional typical section analysis with Whitehead’s [11] unsteady cascade 

aerodynamics to locate the flutter boundary in the frequency-domain.  Frequency-domain 

analyses, which means solving the set of differential equations of motion by converting 

them into algebraic equations through a Fourier Transform, was a common approach 

used in the early flutter computation models because it is simple and the use of 

differential equation solvers and computers are unnecessary.  However, the frequency-

domain approach also limits the problems that could be solved to simple harmonic 

motion problems.  Fortunately, the flutter boundary exhibits simple harmonic motion as 

the blade transitions from converging to diverging oscillations.  Thus, only the flutter 

boundary could be investigated, no actual blade motion or high cycle fatigue could be 

analyzed.  Bendiksen and Friedmann discovered that coupling bending and torsion, and 

the use of structural damping, significantly affects the flutter boundary [10], and thus the 

aeroelastic equations of motion should always include two degrees of freedom (i.e. 

bending and torsion) for an accurate representation of the system. 

Cho et al. [12] performed a more recent time-domain analysis using a three-

dimensional unsteady vortex lattice method to model the unsteady aerodynamics.  The 

time-domain analysis allows any blade motion to be analyzed, not just simple harmonic 

motion.  With this new analysis method, Cho et al. concluded an important point about 
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the relationship between the number of blades, aerodynamics and system stability.  Cho 

found that increasing the number of blades increases flow unsteadiness which 

destabilizes the aeroelastic system and leads to a decrease in flutter speed.  This 

conclusion shows that turbomachines are at a strong aeroelastic disadvantage because of 

the large number of blades.  It is crucial that flutter within turbomachines be further 

investigated. 

 The tuned compressor analyses are insightful but do not look deep into the 

mechanisms that cause flutter because those analysis methods assume a simple model and 

do not take into account real effects.  In reality, compressor blades, although they are 

intended to be identical, have small deviations from each other (i.e. mistuning), caused by 

manufacturing tolerances and wear.  Mistuning sets up localized mode shapes, as seen in 

Fig. 1.8, at much higher amplitudes than those of the tuned case which destroys the 

assumption of cyclic symmetry.  Because the compressors’ mode shapes are no longer 

symmetric, the entire system must be analyzed posing a difficult and lengthy computation 

problem. 

 The effect of mistuning on flutter was not investigated until the 1960’s and 

1970’s, a decade after researchers began studying tuned turbomachinery flutter.  

Movshovich [13], Dye and Henry [14], Ewins [15,16], and Whitehead [17-19] were 

among the first to study mistuning and arrive at conclusions on the effect of mistuning on 
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flutter in turbomachines.  Because they each derived different models and made different 

assumptions about inter-blade phase angle, they arrived at different conclusions.  Some 

aeroelasticians concluded that mistuning was never beneficial to flutter, while others 

argued that mistuning was always beneficial to flutter stability.  However, they all agreed 

that mistuning may have an adverse affect on forced response but can be eliminated with 

elegant mistuning arrangements. 

Kaza and Kielb [20] performed a more rigorous frequency-domain investigation 

on the effect of mistuning on a two-dimensional blade row using a model similar to Ref. 

10 and concluded that a small amount of mistuning can have a beneficial effect on flutter 

velocity and can be used as a passive control method.   

A more recent time-domain flutter analysis using a mistuned turbine was 

performed by Sadeghi and Lui [21].  They used alternate frequency mistuning, where the 

natural frequency of neighboring blades alternates between a high and low value, which 

they confirmed may have a stabilizing effect on flutter.  It was found that mistuning 

averaged the stable and unstable blade modes by changing the inter-blade phase angle.  

Sadeghi and Lui also found that increasing the level of mistuning decreases the maximum 

amplitude of the blades, a benefit to not only flutter but also high cycle fatigue.  A final 

discovery of Sadeghi and Lui was that the mass ratio has a significant effect on the 

minimum mistuning level to stabilize a system. 
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1.4 Objectives 

The objective of the research presented in this thesis is to verify previous findings 

and investigate the effects of mistuning on a compressor to determine if it is a viable 

approach to passively reduce the occurrence of flutter.  A fast and accurate unsteady 

aerodynamic model will be developed for a cascade in the time-domain which will be 

coupled with a mistuned structural model to create a set of aeroelastic equations of 

motion.  A study will be performed on the aerodynamic model to determine its usability 

as an accurate unsteady aerodynamic model.  The equations of motion will be solved 

using a differential equation solver to compute the transient response of each blade.  

System damping will be extracted from the transient response using a system 

identification tool.  Then using the system damping, the system stability and flutter 

boundary can be located.  Mistuning and stability trends will be analyzed to determine 

the practicality of using mistuning as an approach to reducing flutter. 
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Chapter 2: Formulation of the Problem 

 

2.1 Compressor Model Reduction 

One key assumption made throughout this study is in the modeling of the 

compressor.  The three-dimensional compressor, shown in Fig. 1.2, is reduced to a two-

dimensional cascade which is a typical reduction as noted in Ref. 1.  Figure 2.1 shows the 

cascade which linearizes the compressor by cutting and unraveling it so it becomes two-

dimensional.  As seen in Fig. 2.1, the cascade is easy to define because it only requires 

three parameters: chord length, stagger angle and blade spacing.  This reduction allows 

for significantly faster computation and lower cost while still producing the same general 

trends. 

 

2.2 Unsteady Aerodynamic Model 

The unsteady aerodynamic model selected for this analysis is a vortex lattice 

method (VLM) applied to a cascade – an approach that provides a good balance between 

flexibility, computational efficiency and accuracy.  Benefits of the vortex lattice method 

over many other unsteady aerodynamic models are the flexibility to account for flow 

compressibility, viscosity, blade camber and thickness, the ability to accurately model the 

wake, and the capacity to provide lift and moment in the time domain given any input.  
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The vortex lattice method can be used in two-dimensional or three-dimensional flow with 

either a single airfoil or a cascade of any number of airfoils with any cascade geometry. 

An appropriate vortex lattice method aerodynamic model has been developed in 

Ref. 22 for a single isolated airfoil, which along with Ref. 23, is the basis of the model 

developed for this thesis.  The model in Ref. 22 is applied to a 2-D cascade of airfoils 

with a set stagger angle, blade spacing and number of blades, and is adapted to include 

compressibility.  The model assumes that the incoming flow is inviscid and irrotational.  

It also neglects the effects of an engine casing, shrouds, upstream disturbances such as 

other blade rows, and three-dimensional effects.  For simplicity, the model is a single 

isolated blade row strung out into a cascade. 

The fundamental concept behind the unsteady vortex lattice method is to replace 

each airfoil with a specified number of blade and wake vortex (i.e. circulation) elements, 

illustrated in Fig. 2.2, to simulate the bound circulation on the blade and the free 

circulation shed behind the airfoil.  The blade element vortex strength is used to calculate 

lift and moment.  The wake element is used to conserve vorticity which inherently creates 

unsteadiness because the wake is constantly moving and/or changing strength.  Figure 2.3 

gives a visualization of the vortex lattice method used on a cascade of blades where the 

red elements are the blade element vortex points and the blue elements are the wake 

element vortex points.   
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For each blade element, the vortex strength, Γ, is bound at the vortex point (the 

element ¼-chord).  These vortex elements are created from the downwash velocity from 

the blade motion at the collocation point (the element ¾-chord point), shown in Fig. 2.2, 

which is given in Eq. (1) [22], 
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where K is the Kernel function for a infinite 2-D vortex filament [23], defined in Eq. (2) 

and Eq. (3), 
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where N is the number of blade elements, M is the number of blade and wake elements, k 

is the blade index, n is the time step, Γ is the vortex strength and the subscript 1 and 2 

denote the blade and wake, respectively. 

The downwash velocity, w, is given in Eq. (4), which is the sum of the velocity 

components normal to the blade caused by an angle of attack into the freestream velocity, 

as well as plunge velocity and pitch velocity. It is important to note that because the blade 

movement is assumed to be small, it permits the use of the small angle approximation, 

allowing for a less complex equation that is still accurate. 

 

 

 � � )∞  tan - � ./ � 0� � 2 b sc 0% � 14 tan 54 -/  678�- (4) 

 

 

In the wake, a vortex is shed from the trailing edge of the blade at each time step.  

The strength of the wake vortex element shed from the trailing edge, defined in Eq. (5), 
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satisfies conservation of vorticity.  Essentially, the sum of circulation created on the blade 

due to lift at that time step is negated by the first shed vortex to ensure no circulation is 

created in the overall system.  The strength of the following wake vortices is convective, 

as noted in Eq. (6).  Thus for this model, the wake elements stay motionless in the 

streamwise direction, but the strength of each vortex moves to the next wake element at 

every time step.  That is, each i
th

 wake vortex element will have the strength of the i
th

-1 

wake vortex element at the next time step.  The theoretically infinitely long wake is 

approximated as a wake of finite length by the use of a weighting factor, β, on the final 

wake element, as in Eq. (7).  It has been suggested by Hall [24] to use a weighting factor 

of between 0.95 and 1 to accurately cut off the wake.  
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The wake convection, conservation and cut off boundary conditions are 

condensed into the matrices A and B in Eq. (8), which satisfy Eq. (5), Eq. (6) and Eq. (7). 
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The matrices A and B are defined in Eq. (9) through (12) as, 

 

 

 

@� � � 
BC
CC
D1 E E E 10 E E E 0GG0

HHE
HHE

HHE
GG0IJ
JJ
K
     0( � # � #4 (9) 

 

 

@� � � 
BC
CC
D1 0 0 0 00 H 0 0 0000

000
100

0H0
001IJ
JJ
K
     0( � # � ( � #4 (10) 

 



15 

 

 

&� � � 
BC
CC
D1 E 1 E 10 E E E 0GG0

HHE
HHE

HHE
GG0IJ
JJ
K
     0( � # � #4 (11) 

 

 

&� � � 
BC
CC
D0 0 0 0 01 H 0 0 0000

H00
HH0

001
00>IJ
JJ
K
     0( � # � ( � #4 (12) 

 

 

The previous equations are organized and compacted for efficient computing of 

multiple blade aerodynamics, which follow Eq. (13), (14) and (15). 
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The wake vortex strength is calculated in Eq. (16) using static condensation [25] 

and combining Eq. (1) and Eq. (8).  
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By providing the downwash velocity, from Eq. (4), at each blade element and 

solving Eq. (16) for the wake vortex strength, the final aerodynamic equation, Eq. (17), is 

solved which gives the blade vortex element strength at each time step. 

 

 

 ��� � �
���
����� � 
���� (17) 

 

 

Unsteady incompressible lift and moment for each blade is calculated about the 

elastic axis using the blade vortex element strength from Eq. (17) [24].  Equations (18) 

and (19) are the discretized Kutta-Joukowsky equations used to calculate lift and moment 

at the elastic axis [22]. 

 

 

 O� P� � Q)∞; �����
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The effect of low speed compressibility is incorporated using the Prandtl-Glauert 

rule [26], which is approximated in Eq. (20) and Eq. (21).  The Prandtl-Glauert correction 

is only accurate for flows less than Mach 0.6, which is satisfied in this analysis. 

 

 

 O� � � O� P�
R1 � (∞

� (20) 

 

 (� � � (� P�
R1 � (∞

� (21) 

 

 

2.3 Mistuned Structural Model 

For the structural model, the blade is modeled as a typical section.  A typical 

section is a 2-D cross-section of an airfoil taken at the 70-75% span location, which 

accurately represents the full blade characteristics in two dimensions [27].  The typical 

section used in this model is shown in Fig. 2.4.  The structural dynamics of the blades are 

modeled using a simple two degree-of-freedom (plunge and pitch) spring system.  The 

bending (plunge degree of freedom) and torsional (pitch degree of freedom) elastic 
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stiffness of the blades are replaced using translational and torsional springs, with the 

inertial effects included in the stiffness of these springs.   

The point at which the elastic-inertial forces are located is the elastic axis, e.  The 

aerodynamic forces are located at the aerodynamic center; however they are shifted to the 

elastic axis for this analysis.  Static imbalance, xa, is the offset between the center of 

gravity and elastic axis. The static imbalance is an important parameter because it 

provides a method of blade mode coupling.  The blade surface itself, representing the 

aerodynamic shape, is assumed to be flat and rigid.  Small blade deflections are assumed 

so that small angle approximation can be employed. 

To include alternate blade mistuning, a key element to the analysis, the natural 

pitching frequency is alternately increased and decreased for adjacent blades by half of 

the overall mistuning value.  As an example, for 1% mistuning, all even blade pitching 

frequencies would be multiplied by 1.005 and all odd blade pitching frequencies would 

be multiplied by 0.995.  This allows the entire cascade to remain balanced and maintain 

the same average natural pitching frequency.  Although this type of mistuning does not 

represent the actual variations of blades, it still provides the general trends of mistuning.  

A more realistic method of blade mistuning is random mistuning, where the natural 

pitching frequency is randomly changed from blade to blade. 
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2.4 Aeroelastic Model 

The aeroelastic equations of motion combine the unsteady aerodynamic model 

and the mistuned structural model to obtain a coupled system of equations, shown in Eq. 

(22).  The equations of motion are derived using Lagrange’s equation along with kinetic 

and strain energy. 

 

 

 (ST � 
S � U (22) 

 

 

M and K are the mass and stiffness matrices from the mistuned structural model, 

defined in Eq. (23) and Eq. (24).  q is the state vector, which contains the pitch, plunge, 

velocity and acceleration of each blade, and F is the force/moment matrix from the 

unsteady aerodynamic model, defined in Eq. (25). 

 

 

 ( � VW XYXY ZY [ (23) 
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 � V
\ 0
0 
� Y[ (24) 

 

 U � 	�O( � (25) 

 

 

Sa, Ia, Kh and Ka are defined in Eq. (26). 

 

 

 XY � W]�Y ZY � W�Y� 
(26) 

 
\ � W^\�  
� Y � ZY�^Y� 
 

 

It is important to note that Eq. (22) is calculated separately for each blade.  The 

only coupling terms between the blades of the cascade are the aerodynamic lift and 

moment, L and M. 

Blade mistuning becomes inherent in the pitch natural frequency, which is 

calculated in Eq. (27). 
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 ^� Y � ^Y�1 _ `� � (27) 

 

 

2.5 System Integration and Identification 

A fast and accurate integration scheme is used to solve the aeroelastic equations 

of motion.  An explicit Runge-Kutta 4-5
th

 order scheme, also referred to as the Dormand-

Prince pair [28], is implemented as the solver.  It is called a 4-5
th

 order because the 

integration scheme selects the order of accuracy based on its position in the differential 

equation.  The general Runge-Kutta integration scheme is given in Eq. (28),  

 

 

 

 

where y is the actual position, or state vector in this case, f is the differential equation, s is 

the number of stages, h is the time step and a, b, and c are the Dormand-Prince 

 a� � b� � . ; c�,�%�
d

�<�
 

(28)  %� � �0e� � 8�., a�4     0 � 1,2, … , 64 

 b�9� � b� � . ; ]�%�
d

�<�
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coefficients defined in Table 2.1 [28].  Within Table 2.1, each row is a stage, the blue 

section corresponds to the a coefficients, the red section corresponds to the b coefficients 

where the first row provides the fourth-order accurate solution and the second row 

provides the fifth-order accurate solution, and the yellow section corresponds to the c 

coefficients. 

This integration scheme is a one-step solver, meaning it only requires the previous 

time step to calculate the next time step.  The code is an adaptive time-step, non-stiff 

solver which allows it to pass through the range of time steps quickly while maintaining a 

medium amount of accuracy.  Although this is an adaptive time-step solver, it has been 

forced to have a constant time-step as required by the wake model. 

The solution to the equations of motion provides the blade response for any given 

input.  One method of calculating the flutter velocity and stability of a blade is by 

tracking system response damping.  Positive damping means the blades are converging to 

their steady state position, meaning they are stable.  Zero damping indicates neutral 

oscillations because the oscillations are neither converging nor diverging.  The zero 

damping line is referred to as the flutter boundary because any less damping is unstable.  

Negative damping indicates oscillations that are diverging from the steady state position 

(i.e. flutter).  In this case, damping of the aeroelastic transient response is identified using 

a least-squares curve-fitting method.  The least squares-curve fit, used by McNamara and 

Friedmann [29], uses a combined exponential and harmonic function to fit the transient 
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response, shown in Eq. (29) and Eq. (30).  The transient response is fit by guessing 

variables in Eq. (29) and (30) until the error requirement is met. 

 

 

 .0e4 � cP � 7�fghgijc\ cos0^\�01 � l\4e4 � ]\ sin0^\�01 � l\4e4n (29) 

 

 -0e4 � cP � 7�fohoijcY cos0^Y�01 � lY4e4 � ]Y sin0^Y�01 � lY4e4n (30) 
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Chapter 3: Results 

 

3.1 Unsteady Aerodynamics 

The vortex lattice method presented in this paper is compared against several 

other simpler aerodynamic models to examine the accuracy of the vortex lattice method 

and to view the differences between each theory.  Three single blade aerodynamic 

theories are used for comparison: quasi-static, quasi-steady and Theodorsen’s [27].  One 

cascade aerodynamic theory, Whitehead’s [11], is used.   

Quasi-static aerodynamics is the simplest aerodynamic theory available because it 

does not account for inertial forces, phase lag, aerodynamic damping, or lift deficiency 

due to the wake.  However, the benefit of this imprecise theory is that it can be used for 

arbitrary blade motion, not just prescribed simple harmonic motion.  Equation (31) and 

(32) give the lift and moment as calculated by quasi-static aerodynamics.  The lift and 

moment are calculated about the aerodynamic center which is shifted to the elastic axis as 

required by the aeroelastic model.  

 

 

 O � 2�Q)p]?./ � )p-A (31) 
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 ( � �OM]c � 0]/24N (32) 

 

 

Quasi-steady aerodynamics is a more sophisticated theory which includes 

aerodynamic damping and inertial forces.  It can also be applied to arbitrary motion.  

Although quasi-steady aerodynamics is better than quasi-static, it still does not account 

for phase lag and lift deficiency due to the wake, important effects in the study of 

turbomachinery aerodynamics.  The equations for quasi-steady aerodynamics can be 

found in Eq. (33) and (34). 

 

 

 O � �Q]�?.T � )p-/ � ]c-T A � 2�Q)p] V./ � )p- � ] r1
2 � cs -/ [ (33) 

 

 

( � �Q]� V]c.T � )p] r1
2 � cs -/ � ]� r1

8 � c�s -T [

� 2�Q)p]� rc � 1
2s V./ � )p- � ] r1

2 � cs -/ [ 
(34) 
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Theodorsen’s aerodynamic theory includes the effect of the wake, which is built 

in to the C(k) coefficient, or the lift deficiency function. This lift deficiency function, 

which is defined in Eq. (35) where H is the Hankel function of the second kind and k is 

the reduced frequency, reduces the magnitude of lift and produces a phase lag.  However, 

a downside to the use of this deficiency function is that it assumes simple harmonic 

motion which limits the range of problems to be solved to be only forced motion or the 

flutter boundary, where the motion is exactly simple harmonic.  Comparing Eq. (36) and 

(37), which are the equations for lift and moment of Theodorsen’s unsteady 

aerodynamics, to the quasi-steady equations it is seen that the equations are nearly 

identical other than the inclusion of the lift deficiency function in the second term of both 

lift and moment in Theodorsen’s aerodynamics. 

 

 

 u0%4 � v�0�40%4
v�0�40%4 �  vP0�40%4 (35) 

 

 O � �Q]�?.T � )p-/ � ]c-T A � 2�Q)p]u0%4 V./ � )p- � ] r1
2 � cs -/ [ (36) 
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( � �Q]� V]c.T � )p] r1
2 � cs -/ � ]� r1

8 � c�s -T [

� 2�Q)p]�u0%4 rc � 1
2s V./ � )p- � ] r1

2 � cs -/ [ 
(37) 

 

 

The vortex lattice method is compared to these single blade aerodynamic theories 

under both high (k = 0.3) and low (k = 0.01) unsteadiness values in prescribed simple 

harmonic motion.  Figure 3.1 shows the results generated for a single blade under a flow 

with low unsteadiness.  Because there is a low amount of unsteadiness, all three theories 

agree, as shown in Fig. 3.1. 

  It is also expected that at high values of unsteadiness, the theories diverge in 

accordance with the robustness of their aerodynamic modeling.  Figure 3.2 shows the 

relationship between each theory under a highly unsteady flow.  It can be seen that 

because the vortex lattice method and Theodorsen’s theory both include unsteadiness, the 

magnitude of their lift is far reduced from that predicted by the quasi-static and quasi-

steady models which do not account for flow unsteadiness by neglecting wake effects.  It 

can also be seen that the vortex lattice method and Theodorsen’s theory match up very 

well.  As Fig. 3.2 is looked at closer, it can be seen that as unsteadiness is included by the 

lift deficiency coefficient to the quasi-steady case, a phase lag is introduced into 

Theodorsen’s and the vortex lattice method prediction. 
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From this single blade aerodynamic comparison, Theodorsen’s prediction that 

unsteadiness introduces a reduction in lift magnitude and creates a phase lag is 

computationally confirmed.  This vortex lattice model is also determined to be accurate 

for the single blade case.  To more accurately confirm the vortex lattice method in a 

highly unsteady flow, it should be compared to a high fidelity computational fluid 

dynamics model. 

Next, Whitehead’s theory and the vortex lattice method are evaluated in a 

cascade.  Whitehead’s theory is the simplest cascade aerodynamic theory available.  It 

assumes an infinite cascade, uses a vortex sheet method, and accounts for lift deficiency 

from the wake.  The downside is that it assumes simple harmonic motion, so arbitrary 

motion cannot be analyzed.  Whitehead’s theory is basically Theodorsen’s theory applied 

to a cascade.  It has been proven that if Whitehead’s theory assumed infinite blade 

spacing, the solution would converge to Theodorsen’s single blade aerodynamics [11].  

The equations to obtain Whitehead’s unsteady lift and moment about the leading edge 

can be found in Eq. (38) and (39).  The coefficients CFq, CFα, CMq, and CMα have been 

calculated by Whitehead [11]. 

 

 

 O � 2�Q)]�./ uwx � -)uwy� (38) 
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 ( � 4�Q)]��./ u=x � -)u=y� (39) 

 

 

Although Whitehead’s theory assumes an infinite cascade which is impossible to 

analyze for the vortex lattice method, the theories can be compared by examining the 

trend as more blades are added to the cascade for the vortex lattice method.  Figure 3.3 

shows Whitehead’s theory compared to the vortex lattice method for one blade, five 

blades and ten blades at a moderate unsteadiness value (k = 0.1).  The figure shows that 

the single blade produces the most lift.  It is seen that as blades are added to the cascade, 

they produce more unsteadiness because there is wake-to-blade interaction which reduces 

the lift, as predicted.  A larger reduction in lift is noticed when blades are added to a 

smaller cascade (i.e. one to five blades) because each blade added significantly increases 

the overall circulation and unsteadiness which causes the few blades to be severely 

impacted.  However as more blades are added (i.e. five to ten blades), the effect becomes 

less apparent because the addition of each blade is a small portion of the overall system. 

Two important trends can be noted from Fig. 3.3.  First, as the number of blades 

in the vortex lattice method cascade increases, the solution moves toward the magnitude 

of Whitehead’s prediction.  Second, the vortex lattice method, because it has a better 

unsteadiness model, has a larger phase lag than what Whitehead predicted.  On a similar 

note, it is interesting that the phase lag does not increase as the number of blades 
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increase, the cause of which is either because only the center blade is looked at or the 

blade motion for the aerodynamic testing is forced and not free.  It can be concluded from 

Fig. 3.3 that the vortex lattice method applied to a cascade agrees well with Whitehead’s 

theory and becomes very accurate when more than ten blades are added to the cascade. 

 

3.2 Tuned Cascade 

Before mistuning is investigated, the trends of a tuned cascade must first be 

analyzed which will performed for two separate cases.  The first case is a twelve-blade 

cascade in a Mach 0.3 flow, where all the blades are simultaneously disturbed.  The 

disturbance is a small velocity given to both pitch and plunge.  The remaining blade and 

flow properties are found in Table 3.1.  Only twelve blades are analyzed because it is 

computationally inexpensive and still provides the general trends, although it is not 

representative of a full compressor.  Case two is a twenty-blade cascade in an 

incompressible flow, where only the middle blade is disturbed with a pitch and plunge 

velocity.  Table 3.2 gives the parameters used for the flow, cascade structure and blade 

properties for case two. 

The results for the case one tuned cascade are provided in Fig. 3.4 and Fig. 3.5 

which give the damping for all twelve individual blades, each represented by a curve.  As 

seen from Fig. 3.4, the cascade is stable in plunge for every calculated freestream 

velocity and becomes more stable as the freestream velocity is increased.  However for 
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pitch stability, shown in Fig. 3.5, all of the blades except one remain stable as freestream 

velocity is increased.  The single unstable blade begins to flutter around 53 ft/s, which 

causes the system to fail because the diverging oscillations become too large. 

Case two results for a tuned cascade can be observed in Fig. 3.6 and Fig. 3.7.  

Here, only the damping values of the middle 14 blades of the cascade are shown to 

provide a clearer picture of stability.  Plunge stability, given in Fig. 3.6, shows a similar 

trend as Fig. 3.4 in that as freestream velocity increases, the damping increases.  

However, the overall system is highly unstable because all of the blade damping values, 

except one, have negative values.  The single stable blade is the middle blade, which was 

the blade that was disturbed.  From Fig. 3.6, it is concluded that as the center blade is 

disturbed is creates an unsteady wake which effects the remaining blades in the cascade 

and causes them to become unstable.  This phenomenon allows the middle blade to 

remain stable.  The pitch stability from Fig. 3.7, starts unstable but stabilizes around 63 

ft/s.  The middle blade appears to be the most stable for the same reasons observed in Fig. 

3.6. 

 

3.3 Mistuned Cascade 

The ultimate goal in this study is to utilize a variety of mistuning methods to 

stabilize the blade system sooner and/or prevent flutter from occurring.  In the first case, 

alternate blade pitching frequency mistuning is studied with mistuning values of 1 and 
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2%.  In the second case, alternate blade pitching frequency mistuning is also studied at 

values of 1, 2 and 5% mistuning, as well as a case of random mistuning.  The values used 

for the random mistuning are given in Table 3.3 which are randomly generated values 

within about 10% mistuning.  The same properties in Table 3.1 (case one) and Table 3.2 

(case two) are used to evaluate mistuning. 

For case one, the result of 1% mistuning is shown in Fig. 3.8 and Fig. 3.9.  Plunge 

stability remains essentially unchanged with the exception of a few blades becoming 

more or less stable indicating that some blades are losing energy and others are gaining 

energy.  Thus, mistuning sets up an exchange of energy between the blades which could 

potentially lead to a reduction in flutter if the correct blades are mistuned.  On another 

note, the pitch stability goes through some considerable changes as mistuning is added.  

The same trend is observed where certain blades become less stable because they are 

extracting more energy from both the flow and the other blades.  However, the result is 

that blades begin fluttering well before the tuned case flutter velocity of 53 ft/s.  This 

effect is highly undesirable and contradicts Whitehead’s proposal that small amounts of 

mistuning is beneficial. 

To determine if mistuning is still a viable approach to reducing the occurrence of 

flutter in case one, 2% mistuning is analyzed to ensure further mistuning would not 

eventually stabilize the cascade.  Examining Fig. 3.10 and Fig. 3.11, more mistuning only 

appears to exacerbate the problem.  More blades begin to flutter at lower freestream 
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velocities.  The blades also have more negative damping values than the 1% case, 

meaning the amplitude of blade oscillations is growing faster. 

Although case one concludes that mistuning is not beneficial for stability, a 

second case is tested to confirm, oppose or limit the results.  The results of 1% mistuning 

for case two are given in Fig. 3.12 and Fig. 3.13.  A few blades in the plunge degree of 

freedom become a lot more stable; however this comes at the cost of causing most of the 

other blades to become slightly less stable.  The center blade is unaffected by this small 

amount of tuning.  Overall the plunge degree of freedom remains unstable.  In the pitch 

degree of freedom, the addition of mistuning causes the system to become more unstable 

at freestream velocities below 40 ft/s, however, the system stability increases when the 

freestream velocity is above 40 ft/s.  With this, mistuning is successful in preventing the 

occurrence of flutter at a particular velocity in one of the degree of freedoms.  Although 

the plunge degree of freedom remains unstable, this is a large leap towards the successful 

use of mistuning. 

Mistuning will be further analyzed by increasing the mistuning value to 2%.  

Figures 3.14 and 3.15 give the plunge and pitch stability results for this case.  Plunge 

stability improves slightly with the increase in mistuning, but not enough to make a 

difference because it is still overall unstable.  Pitch stability loses its mistuning benefits 

around 40-60 ft/s from the increase of mistuning, but it is still better than the tuned 
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cascade.  These results conclude that the maximum benefit of mistuning might occur 

around 1% mistuning. 

For completeness, 5% mistuning was investigated for case two.  The results are 

provided in Fig. 3.16 and Fig. 3.17.  The effect of the increase in mistuning changes the 

plunge stability by reducing the damping of certain blades while improving the damping 

of others, a trend noticed earlier.  Overall, the plunge stability does not appear to benefit 

from the increase in mistuning.  The pitch stability, conversely, sees major benefits from 

the increase in mistuning.  The overall stability in pitch is better for almost all freestream 

velocities, with the exception of around 40 ft/s, over the tuned cascade, and 1% and 2% 

mistuning.  The 5% mistuning also compacts the damping values such that they are all 

equally damped. 

For the most realistic analysis, random mistuning is investigated which is already 

apparent in compressor blades.  The idea is to determine if the deviations already inherent 

in the real blades are beneficial or harmful to stability.  The plunge stability is given in 

Fig. 3.18 and the pitch stability is given in Fig. 3.19.  For plunge stability, the effect of 

random mistuning is harmful.  All of the damping values are decreased indicating a more 

catastrophic flutter.  Pitch stability only benefits from random mistuning at high 

freestream velocities, otherwise random mistuning is detrimental to pitch stability.  

Because random mistuning appears to be destructive, manufacturers should improve 
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upon their manufacturing tolerances and implement better wear resistance to their blades 

to reduce the amount of random mistuning. 
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Chapter 4: Concluding Remarks 

 

4.1 Conclusions 

This investigation was conducted to study the use of mistuning as a method for 

flutter control and cascade stabilization using a recently developed unsteady aerodynamic 

model applied to a compressor cascade.  The following conclusions have been reached: 

 

1) The recently developed single blade vortex lattice method finds excellent 

agreement with Theodorsen’s, quasi-steady and quasi-static aerodynamic theories. 

 

2) The vortex lattice method applied to a cascade finds good agreement with 

Whitehead’s unsteady aerodynamics.  The vortex lattice method solution moves 

towards Whitehead’s unsteady aerodynamic theory solution as more blades are 

added to the cascade. 

 

3) Unsteadiness introduces a reduction in lift and moment magnitude and creates a 

phase lag. 

 

4) A single disturbed blade can be stabilized by giving its energy to the surrounding 

blades which in turn causes them to become slightly unstable. 
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5) When alternate mistuning is introduced, an exchange of energy occurs which 

causes particular blades to become stabilized and others to destabilize. 

 

6) Mistuning, for case one, is not beneficial to flutter velocity.  Mistuning quickly 

destabilizes the cascade and causes the blades to flutter.  As the level of mistuning 

increases, the blades begin to diverge faster and more blades become excited and 

extract more energy. 

 

7) Case two proves that mistuning has the potential to be used as a method of 

passive flutter control.  The maximum benefit of mistuning for case two occurs 

around 1% and 5% mistuning. 

 

8) Random mistuning is shown to be detrimental to pitch and plunge stability giving 

reason for manufacturers to improve their tolerances and wear resistance. 
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4.2 Recommendations for Future Research 

Several recommendations for future work on this project have been made which 

are summarized as follows: 

 

1) The vortex lattice model should be compared to a high fidelity computational 

fluid dynamics model for both a single blade and a cascade under high and low 

unsteadiness values to better determine the accuracy of the model rather than 

comparing it to other limited aerodynamic models. 

 

2) The aeroelastic model needs to be verified against the results presented in the 

literature review along with both high fidelity models and experimental data 

found in more recent studies. 

 

3) A final direction for this research would be to investigate high cycle fatigue, a 

leading cause of compressor failure.  If the vortex lattice aerodynamic model was 

confirmed to be accurate, the model developed here would be useful in helping 

uncover the mechanisms that cause high cycle fatigue. 
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Table 2.1: Dormand-Prince method coefficients 

 

 

 

 

 

 

 

 

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 -56/15 32/9

8/9 19372/6561 -25360/2187 64448/6561 -212/729

1 9017/3168 -355/33 46732/5247 49/176 -5103/18656

1 35/384 0 500/1113 125/192 -2187/6784 11/84

5179/57600 0 7571/16695 393/640 -92097/339200 187/2100 1/40

35/384 0 500/1113 125/192 -2187/6784 11/84 0
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Table 3.1: Blade and flow properties, case one 

Property Value Units 

B 12  

c 0.5 ft 

xa 0  

a 0  

ωa 10 rad/s 

ωh 25 rad/s 

ρ .002378 slugs/ft
3 

m .1401 slugs 

ra 0.4082 ft 

N 20  

M 80  

β 0.996  

M∞ 0.3  

sc 0.5  

θ 60 deg 
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Table 3.2: Blade and flow properties, case two 

Property Value Units 

B 20  

c 6 ft 

xa 0  

a 0  

ωa 5 rad/s 

ωh 25 rad/s 

ρ .002378 slugs/ft
3 

m 13.4411 slugs 

ra 0.5774 ft 

N 20  

M 100  

β 0.996  

M∞ 0  

sc 1  

θ 60 deg 
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Table 3.3: Mistuning values for random mistuning 

Blade Mistuning 

1 0.9877 

2 0.9763 

3 1.0531 

4 1.0590 

5 0.9374 

6 0.9980 

7 0.9891 

8 1.0293 

9 1.0419 

10 1.0509 

11 0.9552 

12 1.0359 

13 1.0310 

14 0.9325 

15 0.9238 

16 0.9997 

17 1.0919 

18 0.9681 

19 1.0171 

20 0.9448 
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Figure 1.1: GE TF-34 turbofan engine [30] 
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Figure 1.2: Computational model of a compressor rotor [31] 
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Figure 1.3: Relationship between efficiency and structural failures trends 
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Figure 1.4: Collar’s expanded triangle [32] 

 

 

 

 

 

 

 



50 

 

 

 

 

 

Figure 1.5: High cycle fatigue 
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Figure 1.6: Flutter 
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Figure 1.7: Tuned compressor rotor mode shapes [31] 
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Figure 1.8: Mistuned compressor rotor mode shapes [31] 
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Figure 2.1: 2-D cascade geometry of compressor rotor [10] 
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Figure 2.2: Vortex lattice/element model for a 2-D blade [22] 
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Figure 2.3: Motion of airfoil cascade with wake vortices 
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Figure 2.4: Blade geometry and structural model [10] 
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Figure 3.1: Lift comparison of single blade aerodynamic theories, k = 0.01 
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Figure 3.2: Lift comparison of single blade aerodynamic theories, k = 0.3 
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Figure 3.3: Lift comparison of cascade aerodynamic theories, k = 0.1 
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Figure 3.4: Plunge stability for case one, 0% mistuning 

 

 

 

 

 

 

20 25 30 35 40 45 50 55 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Freestream Velocity (ft/s)

D
a
m

p
in

g



62 

 

 

 

 

 

 

Figure 3.5: Pitch stability for case one, 0% mistuning 
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Figure 3.6: Plunge stability for case two, 0% mistuning 
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Figure 3.7: Pitch stability for case two, 0% mistuning 
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Figure 3.8: Plunge stability for case one, 1% mistuning 
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Figure 3.9: Pitch stability for case one, 1% mistuning 
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Figure 3.10: Plunge stability for case one, 2% mistuning 
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Figure 3.11: Pitch stability for case one, 2% mistuning 
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Figure 3.12: Plunge stability case two, 1% mistuning 
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Figure 3.13: Pitch stability case two, 1% mistuning 
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Figure 3.14: Plunge stability for case two, 2% mistuning 
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Figure 3.15: Pitch stability for case two, 2% mistuning 
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Figure 3.16: Plunge stability for case two, 5% mistuning 
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Figure 3.17: Pitch stability for case two, 5% mistuning 
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Figure 3.18: Plunge stability for case two, random mistuning 
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Figure 3.19: Pitch stability for case two, random mistuning 
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